Abstract
Purpose Measurements of breast arterial calcifications (BAC) can offer a personalized, noninvasive approach to risk-stratify women for cardiovascular disease such as heart attack and stroke. We aim to detect and segment breast arterial calcifications in mammograms accurately and suggest novel measurements to quantify detected BAC for future clinical applications.
Methods To separate BAC in mammograms, we propose a light-weight fine vessel segmentation method Simple Context U-Net (SCU-Net). Due to the large image size of mammograms, we adopt a patch-based way to train SCU-Net and obtain the final whole-image-size results by stitching patch-wise results together. To further quantify calcifications, we test five quantitative metrics to inspect the progression of BAC for subjects: Sum of Mask Probability Metric (๐ซโณ), Sum of Mask Area Metric (๐โณ), Sum of Mask Intensity Metric (๐ฎโโณ), Sum of Mask Area with Threshold Intensity Metric (๐ฏ๐โณX) and Sum of Mask Intensity with Threshold X Metric (๐ฏ ๐ฎโโณX). Finally, we demonstrate the ability of the metrics to longitudinally measure calcifications in a group of 26 subjects and evaluate our quantification metrics compared to calcified voxels and calcium mass on breast CT for 10 subjects.
Results Our segmentation results are compared with state-of-the-art network architectures based on recall, precision, accuracy, F1-score/Dice Score and Jaccard Index evaluation metrics and achieve corresponding values of 0.789, 0.708, 0.997, 0.729, and 0.581 for whole-image-size results. The quantification results all show >95% correlation between quantification measures on predicted masks of SCU-Net as compared to the groundtruth and measurement of calcification on breast CT. For the calcifications quantification measurement, our calcification volume (voxels) results yield R2-correlation values of 0.834, 0.843, 0.832, 0.798, and 0.800 for the ๐ซโณ, ๐โณ, ๐ฎโโณ, ๐ฏ๐โณ100, ๐ฏ ๐ฎโโณ100 metrics, respectively; our calcium mass results yield comparable R2-correlation values of 0.866, 0.873, 0.840, 0.774, and 0.798 for the same metrics.
Conclusions SCU-Net is a simple method to accurately segment arterial calcification retrospectively on routine mammograms. Quantification of the calcifications based on this segmentation in the retrospective cohort study has sufficient sensitivity to detect the normal progression over time and should be useful for future research and clinical applications.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work is supported by Winship Invest\$ Pilot Grant Program.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Emory University Institutional Review Board
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The datasets generated during and/or analyzed during the current study are not publicly available due to patient data privacy restrictions, but a de-identified subset of the data is available on reasonable request.