ABSTRACT
In the initial pandemic phase, effluents from wastewater treatment facilities were reported mostly free from Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) RNA, and thus conventional wastewater treatments were generally considered effective. However, there is a lack of first-hand data on i) comparative efficacy of various treatment processes for SARS-CoV-2 RNA removal; and ii) temporal variations in the removal efficacy of a given treatment process in the backdrop of active COVID-19 cases. This work provides a comparative account of the removal efficacy of conventional activated sludge (CAS) and root zone treatments (RZT) based on weekly wastewater surveillance data, consisting of forty-four samples, during a two-month period. The average genome concentration was higher in the inlets of CAS-based wastewater treatment plant in the Sargasan ward (1.25 x 103 copies/ L), than that of RZT plant (7.07 x 102 copies/ L) in an academic institution campus of Gandhinagar, Gujarat, India. ORF 1ab and S genes appeared to be more sensitive to treatment i.e., significantly reduced (p <0.05) than N genes (p>0.05). CAS treatment exhibited better RNA removal efficacy (p=0.014) than RZT (p=0.032). Multivariate analyses suggested that the effective genome concentration should be calculated based on the presence/absence of multiple genes. The present study stresses that treated effluents are not always free from SARS-CoV-2 RNA, and the removal efficacy of a given WWTPs is prone to exhibit temporal variability owing to variations in active COVID-19 cases in the vicinity and genetic material accumulation over time. Disinfection seems less effective than the adsorption and coagulation processes for SARS-CoV-2 removal. Results stress the need for further research on mechanistic insight on SARS-CoV-2 removal through various treatment processes taking solid-liquid partitioning into account.
Highlights
Wastewater treatments may not completely remove the SARS-CoV-2 RNA.
The activated sludge process exhibited better RNA removal efficacy than root-zone treatment.
ORF 1ab and S genes appeared more sensitive to treatment than N genes.
Temporal variability is observed in the removal efficacy of wastewater treatment plants.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is funded by Kiran C Patel Centre for Sustainable Development at IIT Gandhinagar, UNICEF, Gujarat, and UKIERI. We also acknowledge the help received from Dr. Arbind K Patel and other GBRC staff who contributed towards sample and data analyses.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No such approval is required.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data is included. If necessary additional information will be provided on demand.