Abstract
The global pandemic of the novel coronavirus that started in Wuhan, China has affected more than 50 million people worldwide and caused more than 1263,787 tragic deaths. To date, the COVID-19 virus is still spreading and affecting thousands of people. The main problem with testing for COVID-19 is that there are very few test kits available for a large number of affected or suspicious individuals. This leads to the need for automatic detection systems that use artificial intelligence. Deep learning is one of the most powerful AI tools available, so we recommend creating a convolutional neural network to detect COVID-19 positive patients from chest radiographs. According to previous studies, lung X-rays of COVID-19-positive patients show obvious characteristics, so this is a reliable method for testing patients, because X-ray examination of suspicious patients is easier than rt-PCR. Our model has been trained with 820 chest radiographic images (excluding data augmentation) collected from 3 databases, with a classification accuracy of 99.45% (training accuracy of 99.70%), sensitivity of 99.30% and specificity of 99.40 %, proved that our model has become a reliable COVID-19 detector.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No Funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
NA
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
GitHub open-source dataset by Chowdhury et al. The dataset from GitHub by Cohen et al.