Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic. To characterize the disease transmissibility, we propose a Bayesian change point detection model using daily actively infectious cases. Our model is built upon a Bayesian Poisson segmented regression model that can 1) capture the epidemiological dynamics under the changing conditions caused by external or internal factors; 2) provide uncertainty estimates of both the number and locations of change points; 3) adjust any explanatory time-varying covariates. Our model can be used to evaluate public health interventions, identify latent events associated with spreading rates, and yield better short-term forecasts.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Institutes of Health [5P30CA142543, 5R01GM126479, 5R01HG008983].
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
no IRB
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The COVID-19 dataset was downloaded from the COVID-19 Data Repository hosted by Johns Hopkins University Center for Systems Science and Engineering