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Abstract

Coronavirus disease 2019 (COVID-19) is a pandemic. To characterize the disease transmissibility,

we propose a Bayesian change point detection model using daily actively infectious cases. Our

model is built upon a Bayesian Poisson segmented regression model that can 1) capture the

epidemiological dynamics under the changing conditions caused by external or internal factors;

2) provide uncertainty estimates of both the number and locations of change points; 3) adjust

any explanatory time-varying covariates. Our model can be used to evaluate public health

interventions, identify latent events associated with spreading rates, and yield better short-term

forecasts.

Keywords Bayesian hierarchical modeling; Multiple change-point detection; Poisson segmented

regression; Stochastic SIR model.

1 Introduction

A newly identified coronavirus, SARS-CoV-2, is a lethal virus for humans. It has caused the

worldwide pandemic – COVID-19. As reported by the Johns Hopkins University Center for

Systems Science and Engineering (JHU-CSSE), the COVID-19 pandemic has spread to 188

countries and territories with more than 14 million confirmed cases by the end of July 2020.

The extremely rapid spreading of the disease and the increasing burden on healthcare systems
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becomes a major problem for public health. In a response to "flatten the curve" (Akiyama et al.,

2020), both federal and local governments in the United States (U.S.) have enforced a wide range

of public health measures, such as border shutdowns, travel restrictions, and quarantine.

As a consequence, the importance of understanding the COVID-19 dynamics is steadily

increasing in the contemporary world. In epidemiology, the basic reproduction number, R0,

is commonly used to evaluate the transmissibility of an infectious disease like COVID-19. R0

is defined as the expected number of secondary cases produced by a typical case in a closed

population. During the outbreak of an epidemic, the basic reproduction number can be af-

fected by intervention strategies. For example, social measures that decrease the contact rate

between individuals would control the basic reproduction number. Isolating or treating the in-

fected cases could lower the R0 value as well. Another concept in the epidemic theory is the

effective reproduction number Rt, which describes the number of people who can be infected

by an individual at any specific time t in a population. Rt is time-specific since it accounts

for the varying proportions of the population that are immune to the disease over time. There

are many recent studies implementing the SIR model (Kermack and McKendrick, 1927) or its

modified version to analyze the COVID-19 transmissibility in terms of R0 or Rt (see e.g. Chen

et al., 2020; Alvarez et al., 2020; Kantner and Koprucki, 2020; Gostic et al., 2020; Cooper et al.,

2020). Furthermore, several studies have incorporated the information on social measures to

understand the COVID-19 dynamics over the world. For instance, Dehning et al. (2020) com-

bined the SIR model with Bayesian inference to study the time-dependent spreading rate of

COVID-19 in Germany. Song et al. (2020) extended the SIR model by considering the quaran-

tine protocols with a focus on understanding the time-course dynamics of COVID-19 in Hubei,

China. Giordano et al. (2020) enriched the SIR model with additional compartments to account

for under-diagnosis, which could explain the gap between the actual infection dynamics and

perception of COVID-19 outbreak in Italy. Because of heterogeneity in susceptibility and social

dynamics, the COVID-19 transmissibility differs among locations and change over time. U.S.

local governments have started different interventions since mid-March to combat the widespread

of COVID-19. Therefore, the basic reproduction numbers should spatiotemporally vary.

The basic reproduction number of an epidemic event is changing due to the effects of societal

and political actions. The effective social measures such as business closures and stay-at-home

orders could help lower the transmission rate and thus induce changes in R0. By studying the
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variations in R0 over time, we can evaluate the dynamic transmissibility of infectious diseases

like COVID-19. For instance, during the outbreak of Severe acute respiratory syndrome (SARS)

in China around 2003, Riley et al. (2003); Lloyd-Smith et al. (2003) reported an R0 ≈ 3.0

for the onset stage of SARS in Hong Kong. Later in Chowell et al. (2004), the reported R0

for Hong Kong dropped to about 1.1 due to stringent control measures. Decreasing in R0

captured the evolution of SARS transmission dynamics under the efficient diagnosis coupled

with patient isolation measures. A recent study in Germany (Dehning et al., 2020) estimated

the variations in COVID-19 transmission rates for the four phases defined by the time of three

major official government interventions. These studies motivated us to detect the important

transitioning times that occurred during the COVID-19 outbreak in the U.S. The change points

that caused the transitions partitioned the COVID-19 data into segments characterized by unique

temporal patterns. A stochastic version of the discrete-time SIR model was then applied to

estimate the basic reproduction numbers across segments. For a given population, the variation

in the reproduction numbers across different stages reflects the efficacy of the state governmental

interventions.

We propose BayesSMILES: Bayesian Segmentation ModelIng for Longitudinal Epidemiological

Studies, to study the dynamics of COVID-19 transmissibility and to evaluate the effectiveness

of mitigation interventions. The BayesSMILES adopts a Bayesian Poisson segmented regression

model to detect multiple change points based on the daily infectious COVID-19 cases. This

novel model can 1) capture the epidemiological dynamics under the changing conditions caused

by external or internal factors; 2) quantify the uncertainty in both the number and time of

change points; 3) adjust any relevant explanatory time-varying covariates that may affect the

infectious case numbers. In addition, the BayesSMILES incorporated the change point infor-

mation to quantify the COVID-19 transmissibility by estimating the distribution of the basic

reproduction numbers among change-points segmented temporal spans. On the simulated data,

we demonstrate that our approach can improve the accuracy of the change point detection as

compared with a common multiple change-point search method. Applying the proposed methods

into U.S. states, we find that the detected change points correlate well with the times of pub-

licly announced interventions. We also demonstrate that the SIR model integrated with change

point information provided a better short-term forecast. In all, the BayesSMILES enables us to

understand the disease dynamics of COVID-19, and provides useful insights for the anticipation
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and control of current and future pandemics.

The rest of the paper is organized as follows. We review the traditional susceptible-infectious-

recovered (SIR) model in Section 2. In Section 3, we describe the framework of the proposed

BayesSMILES. The Markov chain Monte Carlo algorithm and posterior inference procedures

are described in Section 4. We provide a comprehensive simulations study to illustrate the

performance of the proposed method against a competing approach in Section 5. In Section 6,

we analyze the COVID-19 data for U.S. states using the proposed BayesSMILES. Finally, we

conclude with remarks in Section 7.

2 Review of the SIR Model

The susceptible-infected-removed (SIR) model was developed to simplify the mathematical mod-

eling of human-to-human infectious diseases by Kermack and McKendrick (1927). It is a fun-

damental compartmental model in epidemiology. At any given time, each individual in a closed

population with size N is assigned to three distinctive compartments with labels: susceptible

(S), infectious (I), or removed (R, being either recovery or dead). The standard SIR model in

continuous time that models the flow of people from S to I and then from I to R is described

by the following set of nonlinear ordinary differential equations (ODEs):

dS(t)
dt = −βN−1S(t)I(t)

dI(t)
dt = βN−1S(t)I(t)− γI(t)

dR(t)
dt = γI(t)

(1)

for t > 0, subjecting to S(t) + I(t) + R(t) = N . Here β > 0 is the diseases transmission rate

and γ > 0 is the removal (recovery or death) rate. Conceptually, susceptible individuals become

infectious (S → I) and then are ultimately removed from the possibility of spreading the disease

(I → R) due to death, recovery with immunity against reinfection, or isolation from the rest of

the population (quarantine).

The rationale behind the first equation is (1) is that the number of new infections during

an infinitesimal amount of time, −dS(t)/dt, is equal to the number of susceptible people, S(t),

times the product of the contact rate, I(t)/N , and the disease transmission rate β. The third

equation in (1) reflects that the infectious individuals leave the infectious population per unit

time, dI(t)/dt, as a rate of γI(t). The second equation in (1) follows immediately from the
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first and third ones as a result of dS(t)/dt + dI(t)/dt + dR(t)/dt = 0. Assuming that only a

small fraction of the population is infected or removed in the onset phase of an epidemic, we

have S(t)/N ≈ 1 and thus the second equation reduces to dI(t)/dt = (β − γ)I(t), revealing

that the infectious population is growing if and only if β > γ. As the expected lifetime of an

infected case is given by γ−1, the ratio β/γ is the average number of new infectious cases directly

produced by an infected case in a completely susceptible population. Since it is a good indicator

of the transmissibility of an infectious disease, the epidemiologists name it the basic reproduction

number R0 = β/γ in the context of a standard SIR model, or the effective reproduction number

Rt = βt/γt in the context of a time-variant SIR model, where β and γ are replaced by β(t) and

γ(t) in (1).

3 The Proposed BayesSMILES Method

3.1 Data notations

During a pandemic such as COVID-19, the most accessible and complete data are the daily

reported numbers on confirmed cases and deaths. Suppose N is the total population size in

a given region. Let C = (C1, . . . , CT ) and D = (D1, . . . , DT ) be the sequences of cumulative

confirmed case and death numbers observed at T successive equally spaced points in time (e.g.

day), where Ct and Dt ∈ N for t = 1, . . . , T . For a region of which recovery cases are closely

monitored day by day, we use E = (E1, . . . , ET ) to denote the sequence of cumulative recovery

case numbers. Thus, due to the compositional nature of the basic SIR model, the three tra-

jectories can be constructed as S = (S1, . . . , ST ) with St = N − Ct, R = (R1, . . . , RT ) with

Rt = Dt +Et, and I = (I1, . . . , IT ) with It = N −St−Rt = Ct−Dt−Et. For a region of which

recovery cases do not exist or under-reported, we consider both R and I as missing data and

reconstruct these two sequences according to the last equation of (1) with a pre-specified constant

removal rate γ. Specifically we set I1 = C1 and R1 = 0, and generate Rt = Rt−1 + drIt−1e and
It = It−1 +(Ct−Ct−1)−(Rt−Rt−1) from t = 2 to T sequentially, where d·e : [0,∞)→ N denotes

the ceiling function. For the choice of γ, we suggest estimating its value from publicly available

reports in some region where confirmed, death, and recovery cases are all well-documented, or

from prior epidemic studies due to the same under-reporting issue in actual data. Lastly, let

Y0 be the initial value and Ẏ = (Ẏ1, . . . , ẎT ) be the lag one difference of a sequence Y , where
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Ẏ1 = Y1 − Y0 and each following entry Ẏt = Yt − Yt−1, t = 2, . . . , T , i.e. the difference between

two adjacent observations. Note that Y could be any of those time-series data introduced above,

i.e. C, D, E, S, I, and R.

3.2 Modeling epidemic dynamics via a modified stochastic SIR model

An SIR model has three trajectories, one for each compartment. The compositional nature of

the three trajectories, i.e. S(t) + I(t) + R(t) = N , implies that we only need two of them to

solve the ODEs as shown in (1). As mentioned previously, assuming S(t) ≈ N for all t results

in dI(t)/dt = (β − γ)I(t) and further leads to an exact solution: I(t) = I(0) exp((β − γ)t). For

modeling daily reported infectious data I, we utilize its discrete-time version,

It = I0 exp ((βt − γ)t) (2)

with a time-varying rate βt to account for the transmissibility changes of the disease. For

simplicity’s sake, we assume a constant removal rate γ. Based on (2), we introduce a probabilistic

model, which approximately mimics the dynamics of the deterministic standard SIR model as

shown in (1) during the onset phase of a pandemic. Specifically, we suppose the infectious

population size at time t is sampled from a Poisson model,

It|αt ∼ Poi(Nαt), t = 1, . . . , T, (3)

where αt = I0 exp ((βt − γ)t)/N is a redefined time-varying transmissibility parameter that de-

pends on the initial infectious population size I0, the transmission rate βt, the removal rate γ, and

any latent factors (e.g. public health intervention, social behavior, virus mutation, healthcare

quality, etc.) that may affect the disease transmissibility. This model automatically accounts

for measurement errors and uncertainties associated with the counts. Note that (3) can be gen-

eralized to a negative binomial (NB) model, i.e. It|αt ∼ NB(Nαt, φI) if needed, where φI is a

dispersion parameter to account for over-dispersion that might be observed in I. Here we use

NB(µ, φ), µ, φ > 0 to denote an NB distribution with expectation µ and variance µ+ µ2/φ.

3.3 Detecting multiple change-point via a Poisson segmented regression model

Our multiple change-point detection builds upon the above modified stochastic time-variant SIR

model (3) with stationary transmissibility αt in a certain segment. Particularly, we assume
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that βt only changes at certain time points. Identifying those change points is of significant

importance, as it not only enables us to characterize the temporal dynamics of the pandemic

but also helps policymakers evaluate the effectiveness of the past and ongoing mitigation and

intervention strategies.

In this paper, the change points are defined as those discrete time points that significantly al-

ter the transmission rate βt between two adjacent segments, while assuming the removal rate γ is

constant across all time points. We introduce a latent binary vector γ = (γ1, . . . , γT ), γt ∈ {0, 1},
with γt = 1 if time point t is a change point and γj = 0 otherwise. We restrict γ1 = 1,

although the first time point is not a change point. Those points with γj = 0 can be par-

titioned into segments bounded by two adjacent change points. Thus, we use another vector

z = (z1, . . . , zT ), zi ∈ {1, . . . ,K} to reparameterize γ, where zt = k if time point t is in segment

k, that is, between the k and (k + 1)-th change points. The total number of change points

excluding the first time point is K − 1. Mathematically, z is the cumulative sum of γ, i.e.

zt =
∑t

u=1 γu, while γ is the lag one difference of z, i.e. γt = zt − zt−1 with γ1 = 1. Figure

1 shows the representation of γ and z for a simulated time-series dataset (T = 10) with two

change points.

Figure 1: An example of time-series data (T = 10) with two change points (K = 3) and its associated param-

eterizations in terms of γ and z, respectively. Red triangles are change points, while black circles are not. Note

that the first time point is not a change point, although it is defined as a "change point" for convenience’s sake.

To infer γ or z given the sequence of infectious population size I, we adopt a Poisson

segmented regression framework, which can be written as,

It|αt ∼ Poi(Nαt), t = 1, . . . , T

logαt|zt = k = xTt bk + εt,
(4)
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where xt is a p-dimensional column vector of covariates that includes a scalar of one for the

intercept, time t, and p − 2 explanatory variables observed at time t if applicable. Those ex-

planatory variables could contain the number of tests, weather information, or other temporal

information that are important to adjust for during a longitudinal epidemiological study. bk is

a p-dimensional column vector of segment-specified coefficients that includes an intercept repre-

senting the proportion of infectious people at logarithmic scale, i.e. bk1 = log(I0/N), in segment

k, and a slope accounting for the segment-varying transmission rate, i.e. bk2 = βk − γ. For

simplicity’s sake, we assume that εt is an independent and identically distributed random vari-

able from a zero-mean normal distribution with segment-specific variance εt ∼ N(0, σ2
k). To

ensure the identifiability of all model parameters, we try a set of considerably small values for

σ2
k’s and employ a robust cross validation method called Pareto-smoothed importance sampling

leave-one-out (PSIS-LOO) cross validation to determine the best choice (Vehtari et al., 2017).

Let αk be the sequence of all αt’s in segment k, i.e. (αck , . . . , αck+nk−1), where we denote

ck =
∑T

t=1 I(zt = k)I(γt = 1) as the time point corresponding to the k-th change point and

nk =
∑T

t=1 I(zt = k) as the number of time points in segment k. We can rewrite the second

stage in (4) as logαk|bk ∼ MN(Xkbk, σ
2
kInk), where Ink is an identity matrix and Xk can be

explicitly written as 
1 tck xck,1 · · · xck,p−2

1 tck+1 xck+1,1 · · · xck+1,p−2

...
...

...
. . .

...

1 tck+nk−1 xck+nk−1,1 · · · xck+nk−1,p−2

 .

We assume a zero-mean multivariate normal distribution for bk, that is, bk ∼ MN(0p,H), where

0p is an p-by-1 all zero column vector andH = Diag(h2
1, . . . , h

2
p) is set to be a diagonal variance-

covariance matrix. For a non-informative setting, we recommend choosing a large value for each

h2
j . Through this prior specification, we are able to marginalize out the nuisance parameter bk

and obtain logαk ∼ MN
(
0nk ,XkHX

T
k + σ2

kInk
)
. Consequently, we can write the collapsed

model of (4) as

I1, . . . , IT |α ∼
T∏
t=1

Poi(Nαt)

logα|γ ∼
K∏
k=1

MN
(
0nk ,XkHX

T
k + σ2

kInk
)
.

(5)
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To complete the model specification, we impose an independent Bernoulli prior on γ as γ|ω ∼∏T
t=2 Bern(ω), where ω is interpreted as the probability of a time point being a change point a

priori. We further relax this assumption by allowing ω ∼ Be(aω, bω) to achieve a beta-Bernoulli

prior. In practice, we suggest a constraint of aω + bω = 2 for a vague hyperprior of ω (Tadesse

et al., 2005). In addition to that, we make the prior probability of γ equal to zero if two adjacent

time points are jointly selected as change points. In other words, a segment should consist of at

least two time points.

3.4 Estimating basic reproduction numbers via a stochastic SIR model

Given the multiple change points γ, we estimate the basic reproduction number R0 for each

segment via a stochastic version of the standard SIR model as shown in (1), which only needs

the cumulative confirmed case numbers C. This is because recovery data only exist in few states

in the U.S., which makes both model inference and predictions infeasible. This model considers

both of the removed and actively infectious cases as missing data and mimic their relationship

in spirit to some compartmental models in epidemiology. Specifically, we assume the number of

new removed cases at time t, i.e. Ṙt, is sampled from a Poisson distribution with mean γIt−1,

that is, Ṙt ∼ Poi(γIt−1) = Poi(γ(N −Ct−1 −Rt−1)), where γ should be pre-specified. Based on

this simplification, we rewrite the discrete version of the first equation in (1) as,

(N − Ct)− (N − Ct−1) = −β(N − Ct−1)
N − Ct−1 −Rt−1

N
,

resulting in

Ċt = β(N − Ct−1)
N − Ct−1 −Rt−1

N
.

We further assume the new case number observed at time t, i.e. Ċt, is sampled from an NB

model,

Ċt ∼ NB
(
β(N − Ct−1)

N − Ct−1 −Rt−1

N
,φ

)
, t = 2, . . . , T, (6)

as it automatically accounts for measurement errors and uncertainties associated with the counts.

Following most epidemiological models, we assume this stochastic process is a Markov process,

where the present state (at time t) depends only upon its previous state (at time t− 1). For the

prior distribution of the dispersion parameter φ, we choose a gamma distribution, φ ∼ Ga(aφ, bφ).

We recommend small values, such as aφ = bφ = 0.001, for a non-informative setting. This

model, on average, mimics the epidemic dynamics and is more flexible than those deterministic
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epidemiological models. We assume β comes from a gamma distribution with hyperparameters

that makes both mean and variance of the transformed variable R0 = β/γ equal to 1.

4 Model Fitting

In this section, we describe the Markov chain Monte Carlo (MCMC) algorithms for posterior

inference of the proposed BayesSMILES method, including the inferential strategy to identify

multiple change points and to estimate the basic reproduction numbers, respectively.

4.1 MCMC algorithms for detecting multiple change-point

Our primary interest lies in identifying the change-point locations via the vector γ based on the

actively infectious cases I. According to Section 3.3, the full data likelihood and the priors of

the change-point detection model are written as,

f(I|α) =

T∏
t=1

Poi(It;αt)

π(α|γ) =

K∏
k=1

MN
(
α

(γ)
k ;0

n
(γ)
k

,X
(γ)
k HX

(γ)
k

T
+ σ2

kIn(γ)
k

)

π(γ) =

T∏
t=2

Be-Bern(γt; aω, bω),

(7)

where we use the superscript (γ) to denote the transmissibility parameters αk, the design matrix

Xk, and the number of time points nk in segment k under a specific configuration of γ. At each

MCMC iteration, we perform the following steps.

Update change-point indicator γ: We update the binary latent vector γ via an add-

delete-swap algorithm. We randomly select an entry in γ, say γt, and change its value to

γ∗t = 1 − γt to form a new γ∗. This is an add step if γ∗t = 1 and a delete step otherwise. The

swap step is performed every ten iterations, where we randomly select a change point, say γt = 1,

and swap the values between the t and (t± 1)-th entries in γ to form a new γ∗. We accept the
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proposed γ∗ with the probability min(1,mMH), where the Hasting ratio is

mMH =
π(α|γ∗)
π(α|γ)

π(γ∗)

π(γ)

J(γ∗ ← γ)

J(γ ← γ∗)

=

∏K
k=1 MN

(
α

(γ∗)
k ;0

n
(γ∗)
k

,X
(γ∗)
k HX

(γ∗)
k

T
+ σ2

kIn(γ∗)
k

)
∏K
k=1 MN

(
α

(γ)
k ;0nk ,X

(γ)
k HX

(γ)
k

T
+ σ2

kInk

) ×


aω/bω for add

bω/aω for delete

1 for swap

Here we use J(· ← ·) to denote the proposal probability distribution for the selected move.

Note that the last proposal density ratio equals one. This step simultaneously updates the

segmentation vector z, as it can be constructed from γ.

Update transmissibility parameters α: For each segment partitioned by γ, we update

αt within the same segment, say segment k, sequentially by using a random walk Metropolis-

Hastings (RWMH) algorithm. We first propose a new α∗t , of which logarithmic value is generated

from N
(
logαt, τ

2
α

)
. Let α(γ)

k

∗
=
(
α
c
(γ)
k

, . . . , α∗t , . . . , αc(γ)k +n
(γ)
k −1

)
. Then we accept the proposed

value α∗t with probability min(1,mMH), where the Hastings ratio is

mMH =
f(I|α∗)
f(I|α)

π(α∗|γ)

π(α|γ)

J(α∗ ← α)

J(α← α∗)

=
Poi(It;α∗t )
Poi(It;αt)

MN
(
α

(γ)
k

∗
;0

n
(γ)
k

,X
(γ)
k HX

(γ)
k

T
+ σ2

kIn(γ)
k

)
MN

(
α

(γ)
k ;0

n
(γ)
k

,X
(γ)
k HX

(γ)
k

T
+ σ2

kIn(γ)
k

) .

Note that the proposal density ratio cancels out for this RWMH update. The computation of

the multivariate normal (MN) probability density involves matrix inversion, which can be time-

consuming, particularly when n(γ)
k is large. To significantly improve the computational efficiency,

we follow Zhou and Guan (2018) to approximate the exact inversion under an appropriate choice

of H that satisfies the asymptotic condition. As mentioned previously, H is a p-by-p diagonal

matrix, where the first entry h2
1 corresponds to the variance of the normal prior on bk1. Under

the asymptotic condition of h2
1 ≥ h2

j , ∀j 6= 1, the inversion of an n(γ)
k -by-n(γ)

k matrix reduces to

an inversion of a p-by-p matrix (See more details in Appendix). In practice, we set h2
1 = 10, 000

and h2
2 = . . . = h2

p = 10 to ensure this asymptotic condition.

4.2 MCMC algorithms for estimating basic reproduction numbers

Once the change points are determined, we aim to estimate the basic reproduction numbers R0’s

across different segments and quantify their uncertainties based on the cumulative confirmed
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cases C only. According to Section 3.4, the full data likelihood and the priors of the stochastic

SIR model are written as,

f(C|β,φ,R) =
K∏
k=1

∏
{t:zt=k}

NB
(
Ct;βk(N − Ct−1)

N − Ct−1 −Rt−1

N
,φk

)

π(β) =
K∏
k=1

Ga(βk; aβ, bβ)

π(φ) =

K∏
k=1

Ga(φk; aφ, bφ),

(8)

where β = (β1, . . . , βK) and φ = (φ1, . . . , φK), i.e. the collections of transmission and dispersion

rates of all segments. For the hyperparameters, we set aβ = 1 and bβ = 1/γ so that both of

the expectation and variance of the basic reproduction number R0 = βk/γ are equal to one. We

specify aφ = bφ = 0.001 to obtain a weakly informative gamma prior for all dispersion parameters.

With a pre-defined removal rate γ, we propose the following updates in each MCMC iterations.

Generate R based on C: We assume I1 = C1 and R1 = 0, i.e. all the confirmed cases

are capable to pass the disease to all susceptible individuals in a closed population at time

point t = 1. Then we sample R2 ∼ Poi(γI1), where γ is a pre-specified tuning parameter.

Due to the compositional nature of the SIR model, we can compute I2 = I1 + Ċ2 − Ṙ2, where

Ċ2 = C2−C1 and Ṙ2 = R2−R1 are the new confirmed cases and new removed cases at time point

t = 2, respectively. Next, we repeat this process of sampling Rt ∼ Poi(γIt−1) and computing

It = It−1 + Ċt − Ṙt, t = 3, . . . , T , to generate the sequence R used in an iteration.

Update dispersion parameters φ: For each segment, we update φk by using a RWMH

algorithm. We first propose a new φ∗k, of which logarithmic value is generated from N
(

log φk, τ
2
φ

)
.

Let φ∗ = (φ1, . . . , φ
∗
k, . . . , φK), where only the k-th entry is replaced. Then we accept the

proposed value φ∗k with probability min(1,mMH), where the Hastings ratio is

mMH =
f(C|β,φ∗,R)

f(C|β,φ,R)

π (φ∗)

π (φ)

J (φ← φ∗)

J (φ∗ ← φ)

=

∏
{t:zt=k}NB

(
Ct;βk(N − Ct−1)N−Ct−1−Rt−1

N , φ∗k

)
∏
{t:zt=k}NB

(
Ct;βk(N − Ct−1)N−Ct−1−Rt−1

N , φk

)Ga(φ∗k; aφ, bφ)

Ga(φk; aφ, bφ)
.

Note that the proposal density ratio cancels out for this RWMH update.

Update transmission rates β: For each segment, we update βk by using a RWMH

algorithm. We first propose a new β∗k, of which logarithmic value is generated from N
(

log βk, τ
2
β

)
.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.06.20208132doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20208132
http://creativecommons.org/licenses/by/4.0/


BayesSMILES 13

Let β∗ = (β1, . . . , β
∗
k, . . . , βK), where only the k-th entry is replaced. Then we accept the

proposed value β∗k with probability min(1,mMH), where the Hastings ratio is

mMH =
f(C|β∗,φ,R)

f(C|β,φ,R)

π (β∗)

π (β)

J (β ← β∗)

J (β∗ ← β)

=

∏
{t:zt=k}NB

(
Ct;β

∗
k(N − Ct−1)N−Ct−1−Rt−1

N , φk

)
∏
{t:zt=k}NB

(
Ct;βk(N − Ct−1)N−Ct−1−Rt−1

N , φk

) Be(β∗k; aβ, bβ)

Be(βk; aβ, bβ)
.

Note that the proposal density ratio cancels out for this RWMH update.

4.3 Posterior inference

We explore posterior inference on the parameters of interest by postprocessing the MCMC sam-

ples after burn-in. We start by obtaining a point estimate of the change-point indicator γ by

analyzing its MCMC samples {γ(b), . . . ,γ(B)}, where b indexes the MCMC iteration after burn-

in. One way is to choose the γ corresponding to the maximum-a-posteriori (MAP),

γ̂MAP = argmax
b

π(α(b)|γ(b))π(γ(b)).

The corresponding ẑMAP can be obtained by taking the cumulative sum of γ̂MAP. An alternative

estimate relies on the computation of posterior pairwise probability matrix (PPM), that is, the

probabilities that time point t and t′ are assigned into the same segment, ptt′ ≈
∑B

b=1 I(z
(b)
t =

z
(b)
t′ |·). This estimate utilizes the information from all MCMC samples and is thus more robust.

After obtaining this T -by-T co-clustering matrix denoted by P , a point estimate of z can be

approximated by minimizing the sum of squared deviations of its association matrix from the

PPM, that is,

ẑPPM = argmin
z

∑
t<t′

[I(zt = zt′)− ptt′ ]2 .

The corresponding γ̂PPM can be obtained by taking the difference between consecutive entries

in ẑPPM and set the first entry to one. To construct a “credible interval" for a change point, we

utilize its local dependency structure from all MCMC samples of γ that belong to its neighbors.

Due to the nature of the MCMC algorithm described in Section 4.1 , if a time point t is selected

as a change point, i.e. γt = 1, then its nearby time points must not be a change point. Thus the

correlation between the MCMC sample vectors (γ
(1)
t , . . . , γ

(B)
t ) and (γ

(1)
t±u, . . . , γ

(B)
t±u) tends to be

negative when u is small. Thus, we define the credible interval of a change point as the two ends
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of all its nearby consecutive time points, of which MCMC samples of γ are significantly negatively

correlated with that of the change point. This could be done via a one-sided Pearson correlation

test with a pre-specified significant level, e.g. 0.05. Although quantifying uncertainties of change

points is not formal, it performs very well in the simulation study and yields reasonable results

in the real data analysis.

We constructed the confidence interval for a selected change point t by evaluating its MCMC

samples γMCMC
t = (γ

(1)
t , . . . , γ

(B)
t ). In particular, according to the swap step that updates γ in

the MCMC algorithm, the change point was typically switching between the selected time point

t and its close neighborhood in the MCMC iterations. This is due to the fact that the change

in patterns between segments may not be abrupt, and therefore the time points closed to time t

could also be accepted as a change point in an iteration. Hence, for each change point with γt = 1,

we calculated the correlation between γMCMC
t and γMCMC

t+∆t . Here, we set different values for ∆t

(e.g., ∆t = −3,−2, . . . , 1, 2) such that the collection of t+∆t included a reasonable neighborhood

for time t. Then, we calculated the correlation between γMCMC
t and γMCMC

t+∆t . Given the fact that

only one change point would appear in the neighborhood region, vector γMCMC
t tended to have

a negative correlation with γMCMC
t+∆t .

Once the change points are determined, an approximate Bayesian estimator of the trans-

mission rate βk for each segment k can be simply obtained by averaging over all of its MCMC

samples, β̂k =
∑U

b=1 β
(b)
k /B. In addition, a quantile estimation or credible interval can be ob-

tained. Lastly, we summarize the basic reproduction number in each segment k as R̂0k = β̂k/γ.

4.4 Prediction

Conditional on the multiple change-point locations, we can predict the cumulative or new con-

firmed cases at any future time Tf by Monte Carlo simulation based on the information in the

last segment K only. Specifically, from time T + 1 to Tf , we sequentially generate

Ċ
(b)
t ∼ NB

(
βK(N − Ct−1)

N − Ct−1 −Rt−1

N
,φ

(b)
K

)
, t = T + 1, . . . , Tf . (9)

Then, both short and long-term forecasts can be made by summarizing the (Tf−T )-by-B matrix

of MCMC samples. For instance, the predictive number of cumulative and new confirmed cases

at time T + 1, in average, are
∑B

b=1C
(b)
T+1/B and

∑B
b=1 Ċ

(b)
T+1/B, respectively.
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5 Simulation

We used simulated data to evaluate the performance of our BayesSMILES method in terms of

both multiple change-point detection and basic reproduction number estimation. It is shown

that the proposed Bayesian framework outperforms alternative change-point detection method.

5.1 The generative model

The three trajectories S, I, and R with length T = 120 were generated in the following ways.

We first divided the T = 120 time points into K = 4 segments with the same length, that is,

the true change points were t = 31, t = 61, and t = 91. In other words, the first 30 entries of

z equal to 1, the following 30 entries equal to 2, the next 30 entries equal to 3, and the last

30 entries equal to 4. To mimic the disease transmissibility dynamics across different segments,

we chose segment-varying transmission rates βk while fixing the removal rate γ = 0.03. We

considered four scenarios of the set (β1, β2, β3, β4), corresponding to 1) R0 = (3.0, 1.2, 2.0, 0.8);

2) R0 = (3.0, 2.3, 1.5, 0.8); 3) R0 = (3.0, 1.8, 0.8, 1.6); 4) R0 = (3.0, 2.0, 1.1, 0.5). Then

based on the stochastic version of the standard SIR model, we sampled St and Rt from negative

binomial (NB) distributions, and obtained It, sequentially from t = 1 to T through
St = St−1 −NB(βzt−1N

−1St−1It−1, φS)

Rt = Rt−1 + NB(γIt−1, φR)

It = N − St −Rt

,

where N = 1, 000, 000, the initial I0 = 100 and R0 = 0, and the dispersion parameters φS =

φR = 10. Note that the generative scheme was with an NB error structure, which was different

from our model assumption based on a Poisson error structure. We repeated the above steps to

generate 50 independent datasets for each setting of R0. Figure 2 displays the temporal patterns

of the simulated infectious counts I for the four scenarios.

5.2 Evaluation criteria

To evaluate the multiple change-point detection, we may rely on either the binary change point

indicator vector γ or the time point allocation vector z. For the choice of γ, a change point is

considered to be correctly identified if its location is within a local window of the true position

(Killick and Eckley, 2014). The selection of the window size is ad hoc and may bias the evaluation.
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In addition to that, since change points and non-change points are usually of very different sizes,

most of the binary classification metrics are not suitable for model comparison here. Thus,

we chose those metrics that quantify the agreement between the true and estimated allocation

vectors, i.e. z and ẑ. The two classic performance metrics for the analysis of clustering results are

the adjusted Rand index (ARI) and mutual information (MI), proposed by Hubert and Arabie

(1985) and Steuer et al. (2002), respectively. ARI is the corrected-for-chance version of the

Rand index (Rand, 1971), as a similarity measure between two sample allocation vectors. Let

a =
∑

t>t′ I(zt = zt′)I(ẑt = ẑt′); b =
∑

t>t′ I(zt = zt′)I(ẑt 6= ẑt′); c =
∑

t>t′ I(zt 6= zt′)I(ẑt = ẑt′);

and d =
∑

t>t′ I(zt 6= zt′)I(ẑt 6= ẑt′) be the number of pairs of time points that are a) in the

same segment in both of the true and estimated partitions; b) in different segments in the true

partition but in the same segment of the estimated one; c) in the same segment of the true

partition but in different segments in the estimated one; and d) in different segments in both of

the true and estimated partitions. Then, the ARI can be computed as

ARI(z, ẑ) =

(
T
2

)
(a + d)− [(a + b)(a + c) + (c + d)(b + d)](
T
2

)2 − [(a + b)(a + c) + (c + d)(b + d)]
.

The ARI usually yields values between 0 and 1, although it can yield negative values (Santos

and Embrechts, 2009). The large the index, the more similar between z and ẑ, thus the more

accurately the method detects the actual times at which change points occurred. An alternative

metric choice is MI, which measures the information about one variable that is shared by the

other (Steuer et al., 2002). Let mkk′ =
∑T

t=1 I(zt = k)I(ẑt = k′) be the number of time points

shared between the k-th segment in the true z and the k′-the segment in the estimated one ẑ.

Then, the MI can be computed as

MI(z, ẑ) =

K∑
k=1

K̂∑
k′=1

mkk′

T
log

mkk′T

nkn̂k′
,

where K̂ is the number of segments and n̂k’s are the segment lengths for segment 1, . . . , K̂ in ẑ.

It yields non-negative values. The larger the MI, the more accurate the partition result.

To quantify how well a method estimates the dynamic transmissibility across different seg-

ments, we used the root mean square error (RMSE) that measures the deviation between the

true and estimated values of R0 over all T time points:

RMSE(R0, R̂0) =

T∑
t=1

(R0zt − R̂0ẑt)/T.

A smaller value of RMSE indicates a more accurate estimation of R0’s.
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5.3 Results

As for the MCMC setting of change point detection, we set 40, 000 MCMC iterations and dis-

carded the first half as burn-in. We adopted the weakly informative setting by setting aω = 0.1

and bω = 1.9 in the Beta-Bernoulli prior for the change-point indicator vector γ. We set

H = Diag(h2
1, h

2
2) with h2

1 = 10, 000 and h2
2 = 10 as the covariance matrix in the prior dis-

tribution of bk’s. Finally, we let σ2
k take ten equally spaced values ranging from 0.0001 to 0.01

at the logarithmic scale (base 10) in the PSIS-LOO cross validation. In fitting the stochastic

SIR model, we set 100, 000 MCMC iterations with the first half as burn-in. As suggested in

Waqas et al. (2020), the value of removal rate γ could be estimated by 1
T−1

∑T
t=2

Rt−Rt−1

It
for

each simulated dataset. Then, we set aβ = 1 and bβ = 1/γ so that both of the expectation and

variance of the basic reproduction number R0 = βk/γ are equal to 1.

We first checked the performance of the BayesSMILES on a single simulated dataset, which

was randomly selected from the 50 replicates in Scenario 4 (marked as the blue line in Figure

2). Figure 3(a) demonstrates the change-point detection result based on the Poisson segmented

regression model. The red dashed and the blue solid lines represent the true and the estimated

change point locations, respectively, while the gray ribbons represent the 95% confidence intervals

for those identified change points. As we can see, the BayesSMILES successfully detected the

three true change points in general, as each of the 95% confidence intervals covered the truth.

The resulted values of ARI and MI were 0.93 and 1.28, respectively. Later on, the stochastic SIR

model introduced in Section 3.4 was then fitted to quantify the disease transmissibility in each

segment bounded by the identified change points. Figure 3(b) shows the posterior distributions

ofR0k̂’s for k̂ = 1, 2, 3, 4 from their MCMC samples. The red dashed and blue solid line pinpoints

the true and posterior mean of R0k̂’s, while the two black solid lines mark the boundary of their

95% credible intervals. Clearly, those true values were within their corresponding 95% credible

intervals. The final RMSE for R0 estimation was 0.38 for this single simulated dataset.

To our best knowledge, there is no method like the BayesSMILES that can detect latent

change points while characterizing the transmission dynamics through an SIR model. Thus, in

setting up a comparison study, we therefore considered a two-stage approach that first identifies

multiple change-point of time-series data based on a likelihood based framework, and then esti-

mates the basic reproduction numbers between each pair of nearby change points, following the

stochastic SIR model introduced in Section 3.4. The alternative change point model assumes
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(a) Multiple change-point detection performance
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(b) Basic reproduction number estimation performance

Figure 3: Simulation study: The model fitting results based on a randomly selected simulated dataset (see the

blue curve under Scenario 4 in Figure 2). (a) The locations of change points (blue solid lines) estimated from

the posterior pairwise probability matrix (PPM) and their credible intervals (gray ribbons). The red dashed lines

mark the true change-point locations; (b) The posterior distributions of R0k’s for k = 1, 2, 3, 4 estimated from the

segmented time-series data, given the three identified change points as shown in (a). The red dashed and blue

solid lines are the true and estimated values of R0k’s, respectively. The two black solid lines are the lower and

upper bounds of the 95% credible intervals.

time points within one segment follow a normal distribution with distinct mean and/or variance

from its nearby segments (Hinkley, 1970; Jen and Gupta, 1987), and it uses likelihood ratio

test (LRT) to detect multiple change points. An algorithm named binary segmentation (Ed-
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wards and Cavalli-Sforza, 1965; Sen and Srivastava, 1975) is commonly used to compute the test

statistics for the LRT with high efficiency (Killick et al., 2012). In our case, to detect multiple

change points using this alternative approach named likelihood ratio test with binary segmen-

tation (LRT-BinSeg), we input the logarithmic scale of I into the function cpt.meanvar in the

related R package changepoint (Killick and Eckley, 2014) for each of the simulated datasets.

We specified to use the binary segmentation algorithm with up to 5 of change points to search

for. Note that this restriction was not applicable to the alternative algorithms provided in the

changepoint package. In practice, we found that the alternative algorithms tended to over-select

the number change points.
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(b) Mutual information (MI)
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(c) Root mean square error (RMSE)

Figure 4: Simulation study: The violin plots of (a) adjusted Rand index, (b) mutual information, and (c) R0

root mean square error from 50 replicated datasets generated under the four scenarios. Red and blue violins

correspond to the results obtained by the BayesSMILES and LRT-BinSeg.

Figure 4(a) and (b) exhibit the change-point detection performances for the four scenarios

of R0. Our BayesSMILES performed much better than the likelihood ratio test with the binary

segmentation algorithm (LRT-BinSeg) with respect to multiple change-point detection under

both performance metrics, ARI and MI. For instance, the ARI by the BayesSMILES increased
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39.29% to 122.16% over the LRT-BinSeg among the four scenarios, while the growth in MI

could be up to 60.54%. Figure 4(c) compares the ability to capture the transmission dynamics

in terms of RMSE, which depends on the change-point detection accuracy. As expected, Our

BayesSMILES yielded smaller RMSE values across all scenarios since its identified change point

locations were more accurate. In all, the simulation study demonstrated that the strengths of

BayesSMILES.

6 Analysis of COVID-19 Data

In this section, we applied the BayesSMILES to the COVID-19 daily report data provided by

JHU-CSSE (COVID-19 Data Repository). Several recent COVID-19 studies also based their

analyses on this resource (Dong et al., 2020; Zhou and Ji, 2020; Toda, 2020). We first performed

a preprocessing step to ensure the quality of the infectious data I for the model fitting. Due to

the fact that the recovery cases did not exist for some U.S. states, we treated I and R as missing

data and reconstructed the two sequences according to the process described in Section 3.1. The

observed cumulative confirmed case numbers C were collected for each U.S. state starting from

an early stage of the pandemic outbreak. In particular, we chose the starting time for each state

as when there were least ten confirmed COVID-19 cases for that state. We also set the removal

rate γ = 0.1 as suggested by Pedersen and Meneghini (2020) and Weitz et al. (2020). Due to the

fact that different states could have different starting times, we further trimmed the sequences I

and R for each state based on the latest starting time available. Finally, we set March 22, 2020,

as the new starting time (t = 1) for all 50 states, and let July 19, 2020, be the last observed

time point (t = 120). We used the same hyperparameter and algorithm settings as described in

Section 5.3.

6.1 Detecting change points for U.S. states

We limit our analysis to four U.S. states with the highest cumulative confirmed cases as of July

19, 2020, to keep the paper in a reasonable length. They are New York, Texas, California, and

Florida. The results for the 46 remaining states are available in https://shuangj00.github.io/

BayesSMILES/ (see details in Section 8). Figure 5 displays the detected change points, as well as

the estimated basic reproduction number R0’s cross segments, for the four states. The associated

confidence interval to each identified change point is represented by a gray ribbon. In general,
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those change points detected by the BayesSMILES indeed captured the important COVID-19

events that might affect the transmission rates. For instance, some change points reflected

the positive effects of the preventative strategies such as lockdown, while others explained the

"bounce back" in confirmed cases after the reopening. Table 2 lists the change point locations

and their potentially related events for the four states.

In New York, the first change point was estimated to be March 28. We estimated the

posterior mean of the basic reproduction number decreased from 2.24 (between March and to

March 27) to 1.63 (between March 28 and April 8). Notably, March 28 was the date when the

Centers for Disease Control and Prevention (CDC) issued a 14-day domestic travel advisory for

non-essential persons, which presumably alleviated the situation for the populated states such as

New York. The second change point appeared around April 9, and the R0 of the third segment

dropped to 0.98 with a 95% credible interval of [0.76, 1.25]. This matched the exact day when

the New York state posted its first drop of the ICU admissions since the COVID-19 outbreak

began. The third change point was around April 27. Though there was no direct intervention

issued in late April, we noticed that the mayor of New York City announced that all the major

events had been canceled starting from April 20. This action could bring a positive effect in

controlling the outbreak, and our estimation from the SIR model suggested a further decrease

in the basic reproduction number down to 0.66 with a 95% credible interval of [0.54, 0.81]. We

observed another change point around June 18, which was close to the Phase II reopening of

New York state on June 22. During the Phase II reopening, restaurants were allowed for outdoor

dining, stores opened for in-person retail, and more services resumed operational under strict

limitations. Thus, we saw a little "bounced back" in R0 from 0.66 to 0.82. The last change

point was on June 29. As expected, the basic reproduction number increased to 1.04 with a 95%

credible interval of [0.84, 1.29] in the last segment. Although there was no public announcement

around June 29 with a confidence interval from June 28 to July 4, we suspect that the increased

social interaction during the Independence Day long weekend (between July 3 and July 5) could

be responsible for the increase of the transmission dynamics.

In Texas, there were five change points detected. The first change point was estimated to be

March 28, the same day as the first one for New York state. Due to the similar reason, the policy of

mandatory 14-day quarantines for travelers entering Texas could bring a decrease in terms of the

basic reproduction number (decreased from 2.97 to 2.07). The second change point was around
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April 9 with a further drop of R0 to 1.14 with a 95% credible interval [0.96, 1.35]. We found that

the Texas Governor had extended the state’s disaster declaration for an additional 30 days on

April 12. The extension aimed at protecting the health and safety of Texans by ensuring adequate

capabilities to support communities. Organizations such as the State Operations Center and the

Strategic National Stockpile would continuously supply the state government with resources

needed to protect residents. May 25 was detected as the third change point, and it was the first

time that R0 increased after the two drops. The estimated basic reproduction number was 1.29

with a 95% credible interval [1.02, 1.62]. This increase appeared around May 25 could be due to

the Governor’s updated executive order issued on May 26 that allowed additional services and

activities to open for phase II reopening. The next change point was around June 16, and R0

further increased to 1.72 with a 95% credible interval [1.40, 2.11]. According to the prediction

reported by UT Austin’s COVID-19 Modeling Consortium at the end of May, there might be a

significant increase in the number of cases and hospitalizations beginning mid-June (News from

kxan). Here, the change point location, as well as the increased basic reproduction number, were

consistent with the results of this report. The last change point was around June 28 with an

estimated decrease in R0 to 1.42 with a 95% credible interval [1.17, 1.72]. Notably, the Texas

Governor issued multiple executive orders around late June to early July to mitigate the disease

spreading. For instance, the executive order on June 26 reemphasized the limited occupancy for

all business establishments in Texas. According to an executive order on July 2, all Texans were

required to wear a face-covering in public spaces in counties with 20 or more positive COVID-19

cases. On the same day, the Governor announced an update regarding the executive order on

June 26 with additional measures to slow down the spreading of COVID-19.

In Florida, the first estimated change point was April 3. It was two days after the statewide

stay-at-home order for Florida. We estimated that the basic reproduction number decreased

from 2.70 to 1.28 after the change point. The second change point appeared around the middle

of April. Starting from April 13, some counties such as Osceola county started the requirement

of wearing a face covering while in public. It could explain the reason why we observed a slight

decrease in R0, from 1.28 to 0.92 with a 95% credible interval [0.73, 1.15]. The next change

point was located around May 13, and R0 in this new stage went above 1 again, with a posterior

mean of 1.19 and a 95% credible interval [0.96, 1.50]. We noticed that Florida entered the phase

I reopening on May 18, which could lead to the "bounced back" situation. The fourth change
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point was around June 7, two days after the phase II reopening in Florida. Changes in the phase

II reopening included Universal Orlando opened the parks to the general public for the first

time in months, and we observed that R0 increased again to 1.81 with a 95% credible interval

[1.50, 2.19]. In the last segment (after June 27) , our result revealed a slight drop in the basic

reproduction number from 1.81 to 1.45. This change was potentially related to the consequence

of requiring facial coverings in the four most populated cities in Florida: Tampa, Orlando, Miami,

and Jacksonville. The face mask mandates went into effect for the four cities starting from June

19, 20, 25, and 29, respectively. Therefore, the drop in the transmissibility at the end of June

may be explained by the effectiveness of wearing face masks as a non-pharmaceutical practice.

In California, we detected two change points. California was the first state to announce

lockdown in the COVID-19 pandemic and its stay-at-home order became effective on March 19.

Our results in change point detection could miss these early actions since the data we analyzed

started from March 22. The first selected change point was on April 5, with the value of the

basic reproduction number decreased dramatically when transitioning to the second segment

(from 2.20 to 1.20). The second change point was on June 17, and we saw that R0 increased

to 1.35 in the last segment with a 95% credible interval [1.12, 1.62]. According to California

Governor, higher-risk businesses and venues (e.g. movie theaters, bars, gyms) were allowed to

reopen with restrictions on June 12. Hence, increasing in the basic reproduction number could

be the consequence of reopening. This observation was also observed in New York and Texas.

6.2 Clustering U.S. states based on their change-point locations

We applied BayesSMILES on all 50 U.S. states. Based on the results, we seek to derive an overall

picture of the COVID-19 dynamics across states. We summarized the temporally detected change

points of the 50 states into common patterns, and then we labeled each state by matching its

specific change point pattern to the common patterns. In particular, for each state, we calculated

the marginal posterior probability of inclusion (PPI) for all time points, where the PPI for a time

point t was calculated based on the B of MCMC samples after burn-in: pPPI
t =

∑B
b=1 γt/B. Then

we obtained the vector pPPI = (pPPI
1 , . . . , pPPI

T ). Each entry in pPPI is a value between 0 and

1, representing the proportion of time t selected as a change point among all iterations. Next,

we computed the overall pattern by averaging over the vector pPPI across 50 states. We noticed

that some time points were rarely or never selected as change points. That naturally hinted us
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to group the time points. To illustrate this, we trimmed the top 20% values of pPPI
t for each

time t (Figure 6). The trimming step provided a clear pattern and highlighted the groups of

dates that were commonly identified as change points. We observed three time spans as shown

in Figure 6: March 27 - April 11, May 1 - May 10, and May 22 - July 3. For each state, we

defined its cluster label based on the corresponding change point detection results. If this state

had at least one change point (including the confidence interval) between March 27 - April 11,

the first element in its cluster label is "Change". Otherwise, the first element in the group label

was set to "Stable". We repeated the same process to determine the second and third elements

of the class label for each state. In the end, each state was assigned to a cluster label from

"Change-Change-Change", "Change-Stable-Change", or "Stable-Change-Change".
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Figure 6: Case study: The averaged marginal posterior probability of inclusion (PPI) for each time point to be

selected as a change point over all 50 U.S. states, after trimming the top 20% PPI values. The black dashed lines

partition the whole time range into three segments: March 27 - April 11, May 1 - May 10, and May 22 - July 3.

The map in Figure 7 colors each of the 50 states based on its cluster label, where green,

yellow, and pink correspond to temporal patterns "Change-Stable-Change", "Change-Change-

Change", and "Stable-Change-Change", respectively. Interestingly, three out of the four states

we have analyzed, New York, Texas, and California, belonged to the same category, i.e. "Change-

Stable-Change". Several other states that are also in this category include Georgia, Arizona,

North Carolina, and Louisiana. All of these states were in the top ten states with the most

COVID-19 confirmed cases. We noticed that the phase I statewide reopening for all these states

occurred in mid-May (May 15 for Georgia, May 13 for Arizona, May 8 for North Carolina, May
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15 for Louisiana). Therefore, our model did not report any change points for these states between

May 1 and May 10. The rest states in the 10 states with the most COVID-19 confirmed cases,

including Florida, Illinois, and New Jersey, were labeled as "Change-Change-Change", and all

of them had a change point between May 1 and May 10. As discussed in Section 6.1, Florida

had a change point around May 13 with a confidence interval [May 8,May 18]. According to the

Executive Order 2020-32 issued by the Illinois governors, the state entered the phase II reopening

starting on May 1 with a modified stay-at-home order. For New Jersey, the statewide state-at-

home order was not lifted until June 9. However, our model suggested a change point around

the end of April with a confidence interval [April 25,May 3] with a drop in R0 from 1.11 to

0.68 (details available at https://shuangj00.github.io/BayesSMILES/). We noticed that on

May 3 the New Jersey Governor announced a multi-state agreement to develop a regional supply

chain for personal protective equipment, other medical equipment and testing. This joint-state

protective measure allowed for efficient delivery and reliability of medical equipment for states,

and therefore best utilized the life-saving resources in the face of the COVID-19 outbreak.

6.3 Predicting new confirmed cases for U.S. states

Short-term forecasting of the new daily confirmed COVID-19 cases ĊTf at a future time Tf is

important for designing public policies. Here, we used the estimation results from BayesSMILES

to predict the new confirmed cases for the four states that we analyzed: New York, Texas,

Florida, and California. As suggested in Section 6.1, the basic reproduction number R0 for

one state could go above or below the threshold value of 1 at different disease stages. Hence,

for short-term forecasting, the predictions given by the BayesSMILES were based on the last

segment’s information, which ensured that the predictions fully reflected the most recent disease

characteristics. In contrast, we evaluated an alternative approach that ignored the underlying

disease dynamics and used all the data to fit a single SIR model for the prediction. We named

this method FullDataSIR. Here, we illustrated the advantages of incorporating the change point

information into prediction. In particular, we compared the prediction accuracy of the two

methods: the BayesSMILES and FullDataSIR.

Figure 8 showed the true value of the new daily confirmed COVID-19 cases and the two

types of predictions for the four states. For each state, the 7-day forecast was from July 20 to 26.

First of all, we observed that the predicted mean by the FullDataSIR model tended to be larger
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Figure 7: Case study: The temporal patterns of the COVID-19 transmission dynamics based on change points

across the 50 U.S. states. Green, yellow, and pink correspond to "Change-Stable-Change", "Change-Change-

Change", and "Stable-Change-Change" patterns, respectively.

than that from the BayesSMILES for the same day. This was because the data in the early stage

(in our case, from late March to early April) corresponded to a much larger basic reproduction

number, as compared to the data from the late stage, and the BayesSMILES would ignore the

early stage observations in making the prediction. Second, the closer the predicted value to the

true value on each day, the better the prediction performance. We thus quantified the prediction

accuracy using the mean absolute percentage error (MAPE). The MAPE for the 7-day forecast

was defined as

MAPE(Ċ,
˙̂
C) =

1

7

7∑
Tf=1

∣∣∣∣∣∣ ĊTf −
˙̂
CTf

ĊTf

∣∣∣∣∣∣ ,
where ĊTf was the observed new confirmed cases at future time Tf , and

ˆ̇Ct was the corresponding

prediction. The smaller the MAPE value, the more accurate the prediction.
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Figure 8: Case study: The 7-day forecast (between July 20 and 26) of the daily confirmed COVID-19 case

numbers for the states of New York, Texas, Florida, and California. The red and blue circles and bars are the

predictive means and 95% intervals by the BayesSMILES and FullDataSIR, respectively. The black thick lines

indicate the observed truth.

Table 1: Case study: The mean absolute percentage errors (MAPEs) of the 7-day forecast of daily confirmed

COVID-19 case numbers by the BayesSMILES and FullDataSIR for the states of New York, Texas, Florida, and

California.

New York Texas Florida California

BayesSMILES 24.9 38.0 8.9 40.4

FullDataSIR 33.0 96.7 55.2 39.9

We calculated the MAPE for the 7-day forecast of the four states analyzed in Section 6.1,

and Table 1 summarized the results. For the first three states, the MAPEs from the BayesS-

MILES were much smaller than the MAPEs from the FullDataSIR model, suggesting a better

performance of BayesSMILES. For California, the conclusion was reversed since the FullDataSIR

model showed a slightly lower MAPE. However, if we look at Figure 8(d), the real data (black

horizontal lines) and the predictions from the BayesSMILES (red circles) both showed a down-

going trend. In this case, the consistency in trend could be more important to evaluate two

types of predictions, as compared to the slight difference in MAPEs. Lastly, for most of the
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days shown in Figure 8, the 95% credible interval by BayesSMILES tended to be much narrower

than the interval given by the FullDataSIR model under the same day, especially for Texas,

Florida, and California. Combined with a smaller value of MAPE, the BayesSMILES was able

to provide a more accurate and precise prediction as compared to the alternative approach. In

all, incorporating the change point location information helped improve the prediction accuracy

for the 7-day forecast of new confirmed COVID-19 case numbers.

7 Conclusion

In this paper, we proposed the BayesSMILES, a Bayesian segmentation model for studying the

longitudinal epidemiological data, to analyze the transmission dynamics of an infectious disease

such as COVID-19. Our approach includes a Bayesian Poisson segmented regression model to

detect multiple change-point from the sequence of actively daily infectious cases. Those identified

change points correspond to latent events that significantly alter disease spreading rates, while the

resulting segments are characterized by unique epidemiological patterns. We further describe the

disease transmissibility for each of the segments by using a stochastic time-invariant SIR model,

assuming the transmission rate remains the same till the next change points. Our model outputs

a series of the basic reproduction numbers R0’s over stages to track the changes in spreading

rates during a pandemic.

We applied the BayesSMILES method to analyze the COVID-19 daily report data of 50

U.S. states. Our results showed that the COVID-19 outbreak declined substantially after im-

plementing stringent interventions for several states, including New York, Texas, and Florida.

Meanwhile, our identified change points matched well with the timelines of publicly announced

intervention strategies. In addition to that, the change in the basic reproduction numbers be-

tween two adjacent segments might be used to quantify the effectiveness of an intervention, which

could help us understand the impact of different control measures. Several downstream analyses

based on the BayesSMILES results were conducted. In particular, we clustered the temporal

patterns of the 50 U.S. states based on their change-point locations, leading to an interesting

spatial pattern related to the COVID-19 dynamics. Lastly, we demonstrated that our method

could also improve the short-term forecasting of the new daily confirmed cases.

In the future, we plan to extend the Poisson error structure in the change point detection

model to a negative binomial distribution for modeling the over-dispersed count data. Further-
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more, the current BayesSMILES framework can be generalized to characterize temporal patterns

in other epidemiological data. To do so, the segmented regression model should not be restricted

to countable outcomes.

8 Software

We provide software in the form of R/C++ codes on GitHub https://github.com/shuangj00/

BayesSMILES. It includes the tutorial of implementing the BayesSMILES, using U.S. state-level

COVID-19 data as an example. Besides, we design a website https://shuangj00.github.io/

BayesSMILES/ to summarize the inference results for the 50 U.S. states, as a supplement to

Section 6. The website shows that 1) the detected change points for each U.S. state; 2) the

COVID-19 transmission dynamics based on the segment-varying basic reproduction numbers

R0’s, including their poster means and 95% confidence intervals.
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Table 2: Case study: The list of the identified change points by the BayesSMILES and the related supporting

evidences for the states of New York, Texas, Florida, and California.

State
Change point location

Event Reference(credible interval)

New York

Mar 28 (Mar 26 - Apr 2) 14-day travel advisory NBC New York (2020a)

Apr 9 (Apr 4 - Apr 13) First negative number for ICU admissions Jesse Pound (2020)

Apr 27 (Apr 24 - May 1)

Jun 18 (Jun 14 - Jun 23) Phase II reopening NBC New York (2020b)

Jun 29 (Jun 28 - Jul 4)

Texas

Mar 28 (Mar 28 - Mar 30) 14-day travel advisory Office of the Texas Governor (2020b)

Apr 9 (Apr 8 - Apr 11) Texas disaster declaration extension Ciara Rouege (2020)

May 25 (May 22 - May 26) Additional services and activities allowed to Office of the Texas Governor (2020c)

open for phase II reopening

Jun 16 (Jun 13 - Jun 17) The second COVID-19 wave in June Billy Gates (2020)

Jun 28 (Jun 24 - Jul 3) Multiple executive orders issued for mitigating Office of the Texas Governor (2020d)

the disease spreading Office of the Texas Governor (2020e)

Office of the Texas Governor (2020a)

Florida

Apr 3 (Apr 2 - Apr 5) Statewide stay-at-home order Klas and Contorno (2020)

Apr 14 (Apr 10 - Apr 19) Some counties require face coverings in public Metevia (2020)

May 13 (May 8 - May 18) Phase I reopening Silcox and Turco (2020)

Jun 7 (Jun 2 - Jun 11) Phase II reopening Dobrzyn (2020)

Jun 27 (Jun 26 - Jul 2) Mandatory face coverings in public for Frago (2020)

major cities Speck and Sandoval (2020)

The City Manager of the City of Miami (2020)

Piggott and McLean (2020)

California
Apr 5 (Apr 3 - Apr 6)

Jun 17 (Jun 12 - Jun 22) Higher-risk businesses reopening Sandhya Kambhampati and Krishnakumar (2020)
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9 Appendix: Approximate the multivariate normal density func-

tion

This section provides the details of the multivariate normal density approximation used to im-

prove the computational efficiency in Section 4.1. We consider a general setting as follows. Let

y be an n × 1 vector, W be an n × q matrix, X be an n × p matrix, and A = [W X] (which is

an n× (p+ q) matrix). Let Σ be a (q + p)× (q + p) diagonal matrix where the first q diagonal

elements are h0 and the last p diagonal elements are h1. Assume h0, h1, σ
2 > 0. By Woodbury

identity and Sylvester’s determinant identity,

σ2y>(AΣA> + σ2I)−1y = y>y − y>A(A>A+ σ2Σ−1)−1A>y, (10)∣∣∣AΣA> + σ2I
∣∣∣ = σ2n

∣∣∣(h0/σ
2)W>W + I

∣∣∣ · ∣∣∣h1X
>(h0WW> + σ2I)−1X + I

∣∣∣ , (11)

where | · | denotes the matrix determinant and I is a diagonal matrix of proper dimension. Define

P = I −W (W>W )−1W>, X̃ = PX, ỹ = Py,

where X̃ (respectively ỹ) is the residual after regressing out W from X (respectively y). Zhou

and Guan (2018) showed that the expressions in (10) and (11) can be further simplified when

h0 → ∞. The conclusions are summarized below with the proof available in the supplement of

Zhou and Guan (2018).

Lemma 1. Let y,W,X,A,Σ, ỹ, X̃, σ2, h0, h1 be as defined above. Then,

lim
h0↑∞

σ2y>(AΣA> + σ2I)−1y = ỹ>ỹ − ỹ>X̃(X̃>X̃ + (σ2/h1)I)−1X̃>ỹ, (12)

and

lim
h0↑∞

∣∣AΣA> + σ2I
∣∣

|h0WW> + σ2I| =
∣∣∣(h1/σ

2)X̃>X̃ + I
∣∣∣ . (13)

The conclusions in the lemma above can be used to improve the computational efficiency

for approximating the multivariate normal probability density function (p.d.f.) in our model.

Within each segment k we assumed logα· = Xkβk + εk. Under the prior specification discussed

in Section 3.3, we have logα· ∼ MN(0, XkΣ0X
T
k + σ2I), and the corresponding p.d.f. for logα·

is:

p(logα·) = (2π)−nk/2
∣∣XkΣ0X

T
k + σ2I

∣∣−1/2
exp

{
−1

2
logα>· (XkΣ0X

T
k + σ2I)−1 logα·

}
, (14)
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where nk is the segment length. Next, we simplify the calculation of
∣∣XkΣ0X

T
k + σ2I

∣∣ and
(XkΣ0X

T
k + σ2I)−1 by using Lemma 1. Consider X = (t1, . . . , tnk)> and W as a column vector

of 1’s with length nk. The vector y in our case matches logα·, and Σ = Σ0 =
(
h0 0
0 h1

)
. Lemma 1

states that the inverse and determinant calculation of an nk × nk matrix can be reduced to that

of a p × p matrix, and in our case p = 1 (since the regression model only includes "time" as a

covariate except the intercept term). Therefore, the computational benefit could be significant

when nk was large. We first derive the formula of P as follows,

P = I −W (W>W )−1W> =


1− 1

n − 1
n . . . − 1

n

− 1
n 1− 1

n . . . − 1
n

...
...

. . .
...

− 1
n − 1

n . . . 1− 1
n

 .

Next, according to Equation (12),
∣∣XkΣ0X

T
k + σ2I

∣∣ can be approximated by
∣∣∣(h1/σ

2)X̃>X̃ + I
∣∣∣×∣∣h0WW> + σ2I

∣∣ when h0 → +∞. In particular, we can derive

X̃> = (PX)> =
(
t1 − t̄ t2 − t̄ . . . tnk − t̄

)
.

Therefore,

∣∣∣(h1/σ
2)X̃>X̃ + I

∣∣∣ = |(h1/σ
2)
(
t1 − t̄ t2 − t̄ . . . tnk − t̄

)
×


t1 − t̄
t2 − t̄

...

tnk − t̄

+ I|

= (h1/σ
2)

nk∑
i=1

(ti − t̄)2 + 1. (15)

To calculate
∣∣h0WW> + σ2I

∣∣, note that WW> is an nk × nk matrix, and we can derive that∣∣∣h0WW> + σ2I
∣∣∣ = hnk0

∣∣∣∣WW> +
σ2

h0
I

∣∣∣∣ . (16)

According to Sylvester’s determinant lemma, we have∣∣∣∣WW> +
σ2

h0
I

∣∣∣∣ =

∣∣∣∣I +
h0

σ2
W>W

∣∣∣∣× (σ2

h0

)nk
=

(
1 +

nkh0

σ2

)
×
(
σ2

h0

)nk
.

Therefore, the formula in Equation (16) equals the following,∣∣∣h0WW> + σ2I
∣∣∣ = hnk0 ×

(
1 +

nkh0

σ2

)
×
(
σ2

h0

)nk
= (σ2)nk ×

(
1 +

nkh0

σ2

)
. (17)
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Combining the results in Equations (15) and (17), we can approximate the matrix determinant

in (14) as follows when h0 →∞,

∣∣XkΣ0X
T
k + σ2I

∣∣−1/2 ≈ σ−nk√
nkh0
σ2 + 1

√
h1
σ2

∑nk
i=1(ti − t̄)2 + 1

. (18)

Next, it is straightforward to derive the formula in the exponent part in Equation (14) using the

result in Equation (12). In particular, we can derive:

ỹ> = (Py)> = logα>· P =
(
logα1 − logα· . . . logαnk − logα·

)
,(

X̃>X̃ +
σ2

h1
I

)−1

=

(
nk∑
i=1

(ti − t̄)2 +
σ2

h1

)−1

,

ỹ>X̃ =

nk∑
i=1

(ti − t̄)(logαi − logα·).

Then we approximate the exponent part in Equation (14) as follows under the condition of

h0 →∞,

−1

2
logα>· (XkΣ0X

T
k + σ2I)−1 logα· ≈ −

1

2σ2

(
nk∑
i=1

(logαi − logα·)
2 −

(∑nk
i=1(ti − t̄)(logαi − logα·)

)2∑nk
i=1(ti − t̄)2 + σ2

h1

)
.

(19)

We further introduce the following notation,

Stt =

nk∑
i=1

(ti − t̄)2, Sαα =

nk∑
i=1

(logαi − logα·)
2, Sαt =

nk∑
i=1

(logαi − logα·)(ti − t̄).

By combining the approximations in (18) and (19), we obtain that

p(logα·) ≈
(2π)−nk/2σ−nk√

nkh0
σ2 + 1

√
h1
σ2Stt + 1

exp

(
− 1

2σ2

{
Sαα −

S2
αt

Stt + σ2

h1

})
.

In practice, the condition of h0 →∞ is satisfied when h0 � h1. We set h0 = 10, 000 and h1 = 10

and the approximation accuracy is desirable.
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