Abstract
Importance Large language models, such as GPT-3, have shown potential in assisting with clinical decision-making, but their accuracy and reliability in pediatric differential diagnosis in rural healthcare settings remain underexplored.
Objective Evaluate the performance of a fine-tuned GPT-3 model in assisting with pediatric differential diagnosis in rural healthcare settings and compare its accuracy to human physicians.
Methods Retrospective cohort study using data from a multicenter rural pediatric healthcare organization in Central Louisiana serving approximately 15,000 patients. Data from 500 pediatric patient encounters (age range: 0-18 years) between March 2023 and January 2024 were collected and split into training (70%, n=350) and testing (30%, n=150) sets.
Interventions GPT-3 model (DaVinci version) fine-tuned using OpenAI API on training data for ten epochs.
Main Outcomes and Measures Accuracy of fine-tuned GPT-3 model in generating differential diagnoses, evaluated using sensitivity, specificity, precision, F1 score, and overall accuracy. The model’s performance was compared to human physicians on the testing set.
Results The fine-tuned GPT-3 model achieved an accuracy of 87% (131/150) on the testing set, with a sensitivity of 85%, specificity of 90%, precision of 88%, and F1 score of 0.87. The model’s performance was comparable to human physicians (accuracy 91%; P = .47).
Conclusions and Relevance The fine-tuned GPT-3 model demonstrated high accuracy and reliability in assisting with pediatric differential diagnosis, with performance comparable to human physicians. Large language models could be valuable tools for supporting clinical decision-making in resource-constrained environments. Further research should explore implementation in various clinical workflows.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of Healthy Steps Pediatrics gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.