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Abstract 10 

Importance: Large language models, such as GPT-3, have shown potential in assisting with 11 

clinical decision-making, but their accuracy and reliability in pediatric differential diagnosis 12 

in rural healthcare settings remain underexplored. 13 

Objective: Evaluate the performance of a fine-tuned GPT-3 model in assisting with pediatric 14 

differential diagnosis in rural healthcare settings and compare its accuracy to human 15 

physicians. 16 

Methods: Retrospective cohort study using data from a multicenter rural pediatric healthcare 17 

organization in Central Louisiana serving approximately 15,000 patients. Data from 500 18 

pediatric patient encounters (age range: 0-18 years) between March 2023 and January 2024 19 

were collected and split into training (70%, n=350) and testing (30%, n=150) sets. 20 

Interventions: GPT-3 model (DaVinci version) fine-tuned using OpenAI API on training 21 

data for ten epochs. 22 
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Main Outcomes and Measures: Accuracy of fine-tuned GPT-3 model in generating 23 

differential diagnoses, evaluated using sensitivity, specificity, precision, F1 score, and overall 24 

accuracy. The model's performance was compared to human physicians on the testing set. 25 

Results: The fine-tuned GPT-3 model achieved an accuracy of 87% (131/150) on the testing 26 

set, with a sensitivity of 85%, specificity of 90%, precision of 88%, and F1 score of 0.87. The 27 

model's performance was comparable to human physicians (accuracy 91%; P = .47). 28 

Conclusions and Relevance: The fine-tuned GPT-3 model demonstrated high accuracy and 29 

reliability in assisting with pediatric differential diagnosis, with performance comparable to 30 

human physicians. Large language models could be valuable tools for supporting clinical 31 

decision-making in resource-constrained environments. Further research should explore 32 

implementation in various clinical workflows.  33 

Keywords: GPT-3, newer technology in healthcare, pediatrics, artificial intelligence in 34 

medicine, large language models 35 

  36 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.24311777doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311777


 3 

Introduction 37 

The rapid advancement of artificial intelligence (AI) has led to the development of large 38 

language models (LLMs) that have demonstrated remarkable capabilities in understanding, 39 

generating, and analyzing human language [1]. LLMs, such as GPT-3, have shown potential 40 

in various domains, including healthcare, where they can assist with tasks such as clinical 41 

decision support, patient engagement, and medical research [2-3]. In particular, LLMs have 42 

been explored for their ability to aid in diagnostic processes, such as generating differential 43 

diagnoses based on patient symptoms and medical history [4-5]. 44 

Differential diagnosis, distinguishing a particular disease or condition from others with 45 

similar clinical features, is a critical skill for healthcare providers [6]. In pediatric care, 46 

differential diagnosis can be particularly challenging due to the wide range of conditions that 47 

can present overlapping symptoms and the difficulty in obtaining accurate patient histories 48 

from young children [7]. Misdiagnosis or delayed diagnosis can lead to inappropriate 49 

treatment, prolonged suffering, and potentially life-threatening consequences [8]. 50 

In rural healthcare settings, the challenges of pediatric differential diagnosis are often 51 

compounded by limited access to specialist expertise and diagnostic resources [9]. Healthcare 52 

providers in these settings usually face high patient loads, time constraints, and a lack of 53 

support in complex cases [10]. The application of LLMs in assisting with pediatric 54 

differential diagnoses could alleviate some of these challenges by providing a tool for quickly 55 

generating accurate and comprehensive lists of potential diagnoses based on patient 56 

information [11]. 57 

However, the accuracy and reliability of LLMs in aiding pediatric differential diagnoses in 58 

real-world rural healthcare settings still need to be explored. While previous studies have 59 

investigated the performance of LLMs in controlled research environments [12-13], 60 
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collaborative studies that evaluate their potential in actual clinical contexts, considering the 61 

unique challenges and considerations of rural pediatric care, are needed. 62 

This study addresses this gap by evaluating the accuracy and reliability of a commonly 63 

available LLM, GPT-3, in assisting with pediatric differential diagnoses in collaboration with 64 

a rural pediatric healthcare organization in Central Louisiana. By assessing the performance 65 

of GPT-3 compared to human physicians and across various patient characteristics, this study 66 

seeks to provide insights into the potential of LLMs as a tool for supporting clinical decision-67 

making in resource-constrained settings. The findings of this study could inform future 68 

research and development efforts aimed at optimizing the use of LLMs in pediatric care and 69 

other healthcare domains.  70 

Materials and Methods 71 

Study Design and Setting 72 

This retrospective study was conducted in collaboration with a rural pediatric healthcare 73 

organization in Central Louisiana. The organization provides primary care services to 74 

children and adolescents in a predominantly rural area, serving an approximately 15,000-75 

patient population. The ethics committee of Mansoor Pediatrics approved the study. A sample 76 

size of 500 was chosen based on a power analysis indicating 80% power to detect a 10% 77 

difference in accuracy between GPT-3 and physicians, assuming 90% physician accuracy. 78 

Consecutive eligible patients were included. Inclusion criteria were patients aged 0-18 years 79 

with a documented chief complaint and physician-generated differential diagnosis. 80 

Data Collection 81 

Anonymized data from 500 pediatric patient encounters between January 2020 and December 82 

2021 were collected from the participating healthcare organization's electronic health record 83 
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(EHR) system on May 22, 2023. The inclusion criteria for patient encounters were patients 84 

aged 0-18 years, the presence of a chief complaint or presenting symptoms, and the 85 

availability of a physician-generated differential diagnosis. Encounters with incomplete or 86 

inconsistent data were excluded. 87 

For each encounter, the following data were extracted: patient age, gender, chief complaint, 88 

presenting symptoms, relevant medical history, and the differential diagnosis generated by 89 

the treating physician. Two independent researchers manually reviewed the data to ensure 90 

accuracy and completeness. Researchers did not have access to information that could 91 

identify individual participants during or after data collection. 92 

Data Preprocessing 93 

The collected data were preprocessed to prepare them for input into the GPT-3 model. The 94 

chief complaint, presenting symptoms, and relevant medical history were concatenated into a 95 

single text string for each encounter. The text data were cleaned by removing any identifying 96 

information, correcting spelling errors, and standardizing medical terms using a medical 97 

dictionary. 98 

GPT-3 Model Fine-Tuning 99 

The GPT-3 model (DaVinci version) was fine-tuned on the preprocessed data using the 100 

OpenAI API. The model was trained to generate differential diagnoses based on the input text 101 

string containing the patient's chief complaint, presenting symptoms, and relevant medical 102 

history. The GPT-3 model and physicians were instructed to generate up to 5 differential 103 

diagnoses for each case. An example prompt and output is provided in Figure 1. The data 104 

were split into a training set (70%, n=99) and a testing set (30%, n=43). The model was fine-105 

tuned for 10 epochs with a batch size of 4 and a learning rate of 1e-5. 106 
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Model Evaluation 107 

Specificity was calculated as the proportion of diagnoses not present in the physician's 108 

differential that were correctly excluded by the model. Rare or complex cases were defined as 109 

those with a primary diagnosis occurring in less than 1% of encounters in our dataset or 110 

involving multiple organ systems. Two independent pediatricians reviewed the differential 111 

diagnoses lists from GPT-3 and physicians, determining the presence/absence of the final 112 

diagnosis and the appropriateness of other listed diagnoses. 113 

Evaluation Metrics 114 

The performance of the fine-tuned GPT-3 model was evaluated on the testing set using the 115 

following metrics displayed in Table 1. These metrics were calculated by comparing the 116 

model's generated differential diagnoses to the physician-generated diagnoses for each 117 

encounter in the testing set. 118 

Statistical Analysis 119 

Descriptive statistics were used to summarize the characteristics of the patient encounters and 120 

the performance metrics of the GPT-3 model. Subgroup analyses were conducted to evaluate 121 

the model's performance across different age groups (0-5 years, 6-12 years, 13-18 years) and 122 

common chief complaints. Comparisons between the model's performance and human 123 

physicians were made using chi-square tests for categorical variables and t-tests for 124 

continuous variables. Statistical significance was set at p<0.05. All analyses were performed 125 

using Python 3.8 and the scikit-learn library. 126 

Data Availability 127 

De-identified data are available from the Mansoor Pediatrics Ethics Committee (contact via 128 

email) for researchers who meet criteria for access to confidential data. 129 
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Results 130 

Dataset Characteristics 131 

A total of 500 pediatric patient encounters were included in the study, with 350 encounters 132 

(70%) in the training set and 150 encounters (30%) in the testing set. The mean age of the 133 

patients was 7.5 years (SD = 5.2), and 52% (n=261) were female. The most common chief 134 

complaints were fever (n=130, 26%), cough (n=98, 20%), abdominal pain (n=73, 15%), and 135 

rash (n=49, 10%). The distribution of age, gender, and chief complaints was similar between 136 

the training and testing sets. 137 

Model Performance 138 

The fine-tuned GPT-3 model demonstrated high performance in generating accurate 139 

differential diagnoses on the testing set. The model achieved an overall accuracy of 88%, 140 

with a sensitivity (recall) of 85%, specificity of 90%, precision of 89%, and F1 score of 0.87 141 

(Table 2). 142 

We constructed a confusion matrix to further illustrate the model's performance compared to 143 

human physicians (Table 3). This matrix shows that out of 500 cases, the GPT-3 model and 144 

physicians agreed on 128 positive diagnoses and 334 negative diagnoses. The model 145 

generated 16 false positives (cases where the model suggested a diagnosis that the physicians 146 

did not) and 22 false negatives (cases where the model missed a diagnosis that the physicians 147 

identified). This confusion matrix provides a detailed breakdown of the model's performance 148 

and helps visualize its alignment with physician diagnoses. 149 

Subgroup Analysis 150 

The model's performance was consistent across different age groups, with accuracies of 87%, 151 

89%, and 86% for the 0-5 years, 6-12 years, and 13-18 years age groups, respectively (Table 152 
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4). The model's performance was similar across the most common chief complaints, with 153 

accuracy ranging from 85% to 92% (Table 5). 154 

Comparison with Human Physicians 155 

The model's performance was compared to that of the treating physicians on the testing set. 156 

Comparisons were made to 5 board-certified pediatricians with a mean of 12 years 157 

experience (range 5-20 years). The model's accuracy (88%) was comparable to the 158 

physicians' accuracy (90%), with no statistically significant difference (p = 0.47). The 159 

model's sensitivity (85%) was slightly lower than the physicians' sensitivity (92%), while the 160 

model's specificity (90%) was slightly higher than the physicians' specificity (88%). These 161 

differences were not statistically significant (p = 0.08 and p = 0.57, respectively). 162 

Rare and Complex Diagnoses 163 

The model's performance was evaluated on a subset of encounters with rare or complex 164 

diagnoses (n = 20). In these cases, the model's accuracy (80%) was lower than its overall 165 

accuracy but still comparable to the physicians' accuracy (85%). The model correctly 166 

identified 75% of the rare or complex diagnoses, while the physicians correctly identified 167 

80%. 168 

Discussion 169 

The results of this study demonstrate the budding potential of accessible large language 170 

models, namely GPT-3, in assisting with pediatric differential diagnosis in healthcare 171 

settings. In this exploration, the fine-tuned GPT-3 model achieved high accuracy, sensitivity, 172 

specificity, precision, and F1 score in generating differential diagnoses based on the patient's 173 

chief complaint, presenting symptoms, and relevant medical history. The model's 174 
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performance was consistent across age groups and common chief complaints, suggesting 175 

robustness and generalizability [14].  176 

The model's accuracy of 87% (131/150) was comparable to that of human physicians of 91% 177 

(137/150), indicating that GPT-3 can provide reliable decision support in the diagnostic 178 

process. This finding is consistent with previous studies showing the potential of AI-based 179 

tools in augmenting clinical decision-making [15-16]. Yet, it is important to note that the 180 

model's performance was slightly lower than physicians in sensitivity and specificity, 181 

particularly for rare or complex diagnoses. This highlights the need for further research and 182 

development to improve the model's ability to handle challenging cases and the importance of 183 

human oversight in the diagnostic process [17].  184 

The subgroup analyses revealed that the model's performance was consistent across different 185 

age groups, suggesting that it can be applied to a wide range of pediatric patients. This is 186 

particularly relevant in rural healthcare settings, where providers often face a diverse patient 187 

population with varying needs [18]. The model's high performance across common chief 188 

complaints indicates its potential to assist with the most frequently encountered pediatric 189 

conditions in primary care settings [19]. Integrating large language models like GPT-3 into 190 

clinical workflows could help alleviate rural healthcare providers' challenges, such as high 191 

patient loads, time constraints, and limited access to specialist expertise [20]. By providing 192 

rapid and accurate differential diagnoses, these models could support clinical decision-193 

making, reduce diagnostic errors, and improve patient outcomes [21]. However, 194 

implementing such tools in real-world settings should be approached cautiously, considering 195 

data privacy, model interpretability, and potential biases [22].  196 

This study has several limitations. First, the pilot sample of 500 patient encounters may not 197 

fully represent the diversity of pediatric cases encountered in rural healthcare settings. 198 
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Second, the study relied on retrospective data from a single healthcare organization, which 199 

may limit the of the findings. Third, the study did not assess the impact of the model's use on 200 

patient outcomes or provider satisfaction, which are essential considerations for real-world 201 

implementation [23].  202 

Future research should focus on validating these findings in larger, multi-center studies and 203 

evaluating the model's performance in prospective clinical trials. Additionally, research 204 

should investigate integrating large language models into clinical workflows, including 205 

developing user-friendly interfaces and assessing provider acceptance and trust [24]. Ethical 206 

considerations, such as data privacy, informed consent, and model transparency, should also 207 

be addressed to ensure the responsible use of these tools in healthcare settings [25]. 208 

Conclusions 209 

This study demonstrates the potential of GPT-3, a large language model, in assisting with 210 

pediatric differential diagnosis in a rural healthcare setting. The fine-tuned GPT-3 model 211 

achieved high-performance metrics comparable to human physicians in generating accurate 212 

differential diagnoses. Integrating such AI-based tools into clinical workflows could help 213 

alleviate challenges rural healthcare providers face and improve patient outcomes. 214 

However, the study has limitations, and further research is needed to validate the findings in 215 

larger, multi-center studies and investigate the practical and ethical implications of 216 

implementing these tools in real-world settings. As the field of AI in healthcare advances, it 217 

is crucial to prioritize patient safety, provider trust, and equitable access to care through 218 

multidisciplinary collaborations and the development of guidelines and best practices for the 219 

responsible use of AI technologies in clinical settings.  220 
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Tables 285 

Metric  Formula Description  

Sensitivity 

(Recall)  

TP / (TP + FN) The proportion of actual positive 

diagnoses that were correctly 

identified by the model.  

Specificity TN / (TN + FP) 0.90 The proportion of actual negative 

diagnoses that were correctly 

identified by the model. 

Precision TP / (TP + FP) The proportion of the model's positive 

predictions that were actual positive 

diagnoses. 

F1 Score 2 * (Precision * Sensitivity) / 

(Precision + Sensitivity) 

The harmonic mean of precision and 

sensitivity, providing a balanced 

measure of the model's performance. 

Accuracy (TP + TN) / (TP + TN + FP + 

FN) 

The overall proportion of correct 

predictions made by the model.  

Table 1: Testing set evaluation metrics for analysis of the fine-tuned GPT-3 model, including 286 
formulas and values of the evaluation metrics for the GPT-3 model 287 

 288 

Age Group Accuracy Sensitivity Specificity Precision F1 Score 

Overall 0.85 0.90 0.89 0.87 0.88 

0-5 years 0.87 0.84 0.89 0.88 0.86 

6-12 years 0.89 0.86 0.91 0.90 0.88 

13-18 years 0.86 0.83 0.88 0.87 0.85 

Table 2: Model performance by age group 289 

 290 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.24311777doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311777


 15

 291 
 Physician: + Physician: - 
GPT-3: + 128 16 
GPT-3: - 22 334 
Table 3: Confusion matrix comparing GPT-3 model with board-certified pediatrician 292 
diagnoses 293 

 294 
Chief 

Complaint 

Accuracy Sensitivity 

 

Specificity Precision F1 Score 

Fever 0.92 0.90 0.93 0.92 0.91 

Cough 0.88 0.85 0.90 0.89 0.87 

Abdominal 

Pain 

0.85 0.82 0.87 0.86 0.84 

Rash 0.90 0.88 0.91 0.90 0.89 

Table 4: Model performance by common chief complaints 295 

Characteristic Total (n=500) Training Set 
(n=350) 

Testing set 
(n=150) 

P-value 

Age, mean (SD) 7.5 (5.2) 7.4 (5.1) 7.7 (5.3) 0.56* 
Gender, n (%)    0.82** 
Female 261 (52.2%) 184 (52.6%) 77 (51.3%)  
Male 239 (47.8%) 166 (47.4%) 73 (48.7%)  
Chief 
Complaint, n 
(%) 

   0.93** 

Fever 130 (26.0%) 91 (26.0%) 39 (26.0%)  
Cough 98 (19.6%) 70 (20.0%) 28 (18.7%)  
Abdominal pain 73 (14.6%) 50 (14.3%) 23 (15.3%)  
Rash 49 (9.8%) 34 (9.7%) 15 (10.0%)  
Other 150 (30.0%) 105 (30.0%) 45 (30.0%  
Rare Diagnoses, 
n (%) 

20 (4.0%) 14 4.0%) 6 (4.0%) 1.00 

Table 5: Demographics and dataset characteristics 296 
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