Optimal algorithms for controlling infectious diseases in real time using noisy infection data
View ORCID ProfileSandor Beregi, View ORCID ProfileKris V. Parag
doi: https://doi.org/10.1101/2024.05.24.24307878
Sandor Beregi
1Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
Kris V. Parag
1Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
Data Availability
The code generating the results presented here is available at https://github.com/sandorberegi/Epidemic-control-with-noisy-real-time-data.
https://github.com/sandorberegi/Epidemic-control-with-noisy-real-time-data
Posted June 12, 2024.
Optimal algorithms for controlling infectious diseases in real time using noisy infection data
Sandor Beregi, Kris V. Parag
medRxiv 2024.05.24.24307878; doi: https://doi.org/10.1101/2024.05.24.24307878
Subject Area
Subject Areas
- Addiction Medicine (401)
- Allergy and Immunology (712)
- Anesthesia (204)
- Cardiovascular Medicine (2965)
- Dermatology (250)
- Emergency Medicine (444)
- Epidemiology (12781)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4609)
- Geriatric Medicine (423)
- Health Economics (732)
- Health Informatics (2939)
- Health Policy (1070)
- Hematology (391)
- HIV/AIDS (927)
- Medical Education (429)
- Medical Ethics (116)
- Nephrology (474)
- Neurology (4391)
- Nursing (237)
- Nutrition (646)
- Oncology (2284)
- Ophthalmology (650)
- Orthopedics (258)
- Otolaryngology (326)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1199)
- Primary Care Research (501)
- Public and Global Health (6980)
- Radiology and Imaging (1539)
- Respiratory Medicine (917)
- Rheumatology (443)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (182)