KUL@SMM4H’23: Text Augmentations with R-drop for Classification of Tweets Self Reporting Covid-19
View ORCID ProfileSumam Francis, Marie-Francine Moens
doi: https://doi.org/10.1101/2023.11.06.23298151
Sumam Francis
1KU Leuven, Belgium
Marie-Francine Moens
1KU Leuven, Belgium
Data Availability
The data used for the work was obtained from SMM4H 2023 Task 1 workshop organisers after registering to participate in it.
Posted November 07, 2023.
KUL@SMM4H’23: Text Augmentations with R-drop for Classification of Tweets Self Reporting Covid-19
Sumam Francis, Marie-Francine Moens
medRxiv 2023.11.06.23298151; doi: https://doi.org/10.1101/2023.11.06.23298151
Subject Area
Subject Areas
- Addiction Medicine (390)
- Allergy and Immunology (705)
- Anesthesia (197)
- Cardiovascular Medicine (2881)
- Dermatology (247)
- Emergency Medicine (432)
- Epidemiology (12617)
- Forensic Medicine (10)
- Gastroenterology (812)
- Genetic and Genomic Medicine (4482)
- Geriatric Medicine (409)
- Health Economics (717)
- Health Informatics (2868)
- Health Policy (1059)
- Hematology (378)
- HIV/AIDS (910)
- Medical Education (418)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4244)
- Nursing (228)
- Nutrition (622)
- Oncology (2225)
- Ophthalmology (633)
- Orthopedics (255)
- Otolaryngology (322)
- Pain Medicine (270)
- Palliative Medicine (83)
- Pathology (490)
- Pediatrics (1182)
- Primary Care Research (487)
- Public and Global Health (6829)
- Radiology and Imaging (1502)
- Respiratory Medicine (908)
- Rheumatology (430)
- Sports Medicine (376)
- Surgery (475)
- Toxicology (60)
- Transplantation (206)
- Urology (176)