Transfer learning on structural brain age models to decode cognition in MS: a federated learning approach
View ORCID ProfileStijn Denissen, View ORCID ProfileMatthias Grothe, View ORCID ProfileManuela Vaněčková, View ORCID ProfileTomáš Uher, View ORCID ProfileJorne Laton, View ORCID ProfileMatěj Kudrna, View ORCID ProfileDana Horáková, Michael Kirsch, View ORCID ProfileJiří Motýl, View ORCID ProfileMaarten De Vos, View ORCID ProfileOliver Y. Chén, View ORCID ProfileJeroen Van Schependom, View ORCID ProfileDiana Maria Sima, View ORCID ProfileGuy Nagels
doi: https://doi.org/10.1101/2023.04.22.23288741
Stijn Denissen
1AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
2icometrix, Leuven, Belgium
3Department of Radiology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
Matthias Grothe
4Department of Neurology, University Medicine Greifswald, Greifswald, Germany
Manuela Vaněčková
3Department of Radiology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
Tomáš Uher
5Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
Jorne Laton
1AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
Matěj Kudrna
3Department of Radiology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
Dana Horáková
5Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
Michael Kirsch
6Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Greifswald, Germany
Jiří Motýl
5Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
Maarten De Vos
7Departments of Electrical Engineering (ESAT) and Development & Regeneration, KU Leuven, Leuven, Belgium
Oliver Y. Chén
8Département Médecine de Laboratoire et Pathologie (DMLP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
9Faculté de Biologie et de Médecine (FBM), Université de Lausanne, Lausanne, Switzerland
Jeroen Van Schependom
1AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
10Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
Diana Maria Sima
1AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
2icometrix, Leuven, Belgium
Guy Nagels
1AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
2icometrix, Leuven, Belgium
11St Edmund Hall, University of Oxford, Queen’s Lane, Oxford, UK
Data Availability
Retrospective data used in the present study are confidential clinical data. Interested researchers can contact Guy Nagels for the Brussels data, Matthias Grothe for the Greifswald data and Manuela Vaneckova for the Prague data.
Posted April 26, 2023.
Transfer learning on structural brain age models to decode cognition in MS: a federated learning approach
Stijn Denissen, Matthias Grothe, Manuela Vaněčková, Tomáš Uher, Jorne Laton, Matěj Kudrna, Dana Horáková, Michael Kirsch, Jiří Motýl, Maarten De Vos, Oliver Y. Chén, Jeroen Van Schependom, Diana Maria Sima, Guy Nagels
medRxiv 2023.04.22.23288741; doi: https://doi.org/10.1101/2023.04.22.23288741
Transfer learning on structural brain age models to decode cognition in MS: a federated learning approach
Stijn Denissen, Matthias Grothe, Manuela Vaněčková, Tomáš Uher, Jorne Laton, Matěj Kudrna, Dana Horáková, Michael Kirsch, Jiří Motýl, Maarten De Vos, Oliver Y. Chén, Jeroen Van Schependom, Diana Maria Sima, Guy Nagels
medRxiv 2023.04.22.23288741; doi: https://doi.org/10.1101/2023.04.22.23288741
Subject Area
Subject Areas
- Addiction Medicine (403)
- Allergy and Immunology (712)
- Anesthesia (205)
- Cardiovascular Medicine (2966)
- Dermatology (251)
- Emergency Medicine (445)
- Epidemiology (12795)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4614)
- Geriatric Medicine (423)
- Health Economics (732)
- Health Informatics (2940)
- Health Policy (1072)
- Hematology (393)
- HIV/AIDS (930)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (474)
- Neurology (4396)
- Nursing (237)
- Nutrition (646)
- Oncology (2287)
- Ophthalmology (651)
- Orthopedics (259)
- Otolaryngology (327)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1199)
- Primary Care Research (502)
- Public and Global Health (6988)
- Radiology and Imaging (1541)
- Respiratory Medicine (918)
- Rheumatology (443)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (182)