Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches
View ORCID ProfileMatthew T. Warkentin, Hamad Al-Sawaihey, Stephen Lam, Geoffrey Liu, Brenda Diergaarde, Jian-Min Yuan, David O. Wilson, Martin C. Tammemägi, Sukhinder Atkar-Khattra, Benjamin Grant, Yonathan Brhane, Elham Khodayari-Moez, Kieran R. Campbell, View ORCID ProfileRayjean J. Hung
doi: https://doi.org/10.1101/2022.10.03.22280659
Matthew T. Warkentin
1Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
2Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Hamad Al-Sawaihey
1Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
Stephen Lam
3Department of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
4British Columbia Cancer Agency, Vancouver, BC, Canada
Geoffrey Liu
2Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
5Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
Brenda Diergaarde
6Department of Human Genetics and UPMC Hillman Cancer Center, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
Jian-Min Yuan
6Department of Human Genetics and UPMC Hillman Cancer Center, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
David O. Wilson
7Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
Martin C. Tammemägi
8Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
Sukhinder Atkar-Khattra
3Department of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
4British Columbia Cancer Agency, Vancouver, BC, Canada
Benjamin Grant
5Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
Yonathan Brhane
1Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
Elham Khodayari-Moez
1Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
Kieran R. Campbell
1Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
9Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
10Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
11Department of Computer Science, University of Toronto, Toronto, ON, Canada
12Ontario Institute of Cancer Research, Toronto, ON, Canada
13Vector Institute, Toronto, ON, Canada
Rayjean J. Hung
1Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
2Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Data Availability
All data used in the present study may be made available upon reasonable request to the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) program upon approval by the Committee.
Posted October 05, 2022.
Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches
Matthew T. Warkentin, Hamad Al-Sawaihey, Stephen Lam, Geoffrey Liu, Brenda Diergaarde, Jian-Min Yuan, David O. Wilson, Martin C. Tammemägi, Sukhinder Atkar-Khattra, Benjamin Grant, Yonathan Brhane, Elham Khodayari-Moez, Kieran R. Campbell, Rayjean J. Hung
medRxiv 2022.10.03.22280659; doi: https://doi.org/10.1101/2022.10.03.22280659
Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches
Matthew T. Warkentin, Hamad Al-Sawaihey, Stephen Lam, Geoffrey Liu, Brenda Diergaarde, Jian-Min Yuan, David O. Wilson, Martin C. Tammemägi, Sukhinder Atkar-Khattra, Benjamin Grant, Yonathan Brhane, Elham Khodayari-Moez, Kieran R. Campbell, Rayjean J. Hung
medRxiv 2022.10.03.22280659; doi: https://doi.org/10.1101/2022.10.03.22280659
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (715)
- Anesthesia (210)
- Cardiovascular Medicine (2989)
- Dermatology (254)
- Emergency Medicine (447)
- Epidemiology (12873)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4669)
- Geriatric Medicine (428)
- Health Economics (735)
- Health Informatics (2969)
- Health Policy (1079)
- Hematology (394)
- HIV/AIDS (941)
- Medical Education (433)
- Medical Ethics (116)
- Nephrology (479)
- Neurology (4450)
- Nursing (239)
- Nutrition (654)
- Oncology (2316)
- Ophthalmology (659)
- Orthopedics (261)
- Otolaryngology (329)
- Pain Medicine (287)
- Palliative Medicine (85)
- Pathology (505)
- Pediatrics (1207)
- Primary Care Research (506)
- Public and Global Health (7047)
- Radiology and Imaging (1563)
- Respiratory Medicine (927)
- Rheumatology (447)
- Sports Medicine (389)
- Surgery (495)
- Toxicology (60)
- Transplantation (214)
- Urology (186)