Leveraging of SARS-CoV-2 PCR cycle thresholds values (Ct) to forecast COVID-19 trends
View ORCID ProfileNicolas Yin, Simon Dellicour, Valery Daubie, Nicolas Franco, Magali Wautier, Christel Faes, Dieter Van Cauteren, Liv Nymark, Niel Hens, Marius Gilbert, Marie Hallin, Olivier Vandenberg
doi: https://doi.org/10.1101/2021.07.17.21260679
Nicolas Yin
1Department of Microbiology, Laboratoire Hospitalier Universtaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
Simon Dellicour
2Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
3Department of Microbiology, Immunology and Transplantation, Division of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
Valery Daubie
1Department of Microbiology, Laboratoire Hospitalier Universtaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
Nicolas Franco
4Namur Centre for Complex Systems (naXys) & Department of Mathematics, University of Namur, Namur, Belgium
5Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University (UHasselt), Hasselt, Belgium
Magali Wautier
1Department of Microbiology, Laboratoire Hospitalier Universtaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
Christel Faes
5Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University (UHasselt), Hasselt, Belgium
Dieter Van Cauteren
6Scientific Directorate of Epidemiology and public health, Sciensano, Brussels, Belgium
Liv Nymark
7Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Oslo, Norway
8Department of Health Management and Health Economics, University of Oslo, Oslo, Norway
Niel Hens
5Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University (UHasselt), Hasselt, Belgium
9Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
Marius Gilbert
2Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
Marie Hallin
1Department of Microbiology, Laboratoire Hospitalier Universtaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
10Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
Olivier Vandenberg
10Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
11Clinical Research and Innovation Unit, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
12Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
Data Availability
The complete de-identified data set will be available upon request to Nicolas.yin@lhub-ulb.be for researchers whose proposed use of the data has been approved, for any purpose. If needed, requests will require the ethics committee approval of the Saint-Pierre University Hospital (Brussels, Belgium). Anonymized data are fully available on reasonable request from the corresponding author after approval by the hospital ethics committee. Data Availability Statement. R script and related files needed to run the analyses and generate Figures 1, 3, 4 and 5 presented in our study are all available at https://github.com/sdellicour/Ct_measures_LHUB.
Posted July 22, 2021.
Leveraging of SARS-CoV-2 PCR cycle thresholds values (Ct) to forecast COVID-19 trends
Nicolas Yin, Simon Dellicour, Valery Daubie, Nicolas Franco, Magali Wautier, Christel Faes, Dieter Van Cauteren, Liv Nymark, Niel Hens, Marius Gilbert, Marie Hallin, Olivier Vandenberg
medRxiv 2021.07.17.21260679; doi: https://doi.org/10.1101/2021.07.17.21260679
Leveraging of SARS-CoV-2 PCR cycle thresholds values (Ct) to forecast COVID-19 trends
Nicolas Yin, Simon Dellicour, Valery Daubie, Nicolas Franco, Magali Wautier, Christel Faes, Dieter Van Cauteren, Liv Nymark, Niel Hens, Marius Gilbert, Marie Hallin, Olivier Vandenberg
medRxiv 2021.07.17.21260679; doi: https://doi.org/10.1101/2021.07.17.21260679
Subject Area
Subject Areas
- Addiction Medicine (381)
- Allergy and Immunology (699)
- Anesthesia (189)
- Cardiovascular Medicine (2832)
- Dermatology (242)
- Emergency Medicine (427)
- Epidemiology (12531)
- Forensic Medicine (10)
- Gastroenterology (800)
- Genetic and Genomic Medicine (4409)
- Geriatric Medicine (400)
- Health Economics (712)
- Health Informatics (2838)
- Health Policy (1045)
- Hematology (373)
- HIV/AIDS (893)
- Medical Education (412)
- Medical Ethics (114)
- Nephrology (461)
- Neurology (4168)
- Nursing (220)
- Nutrition (615)
- Oncology (2194)
- Ophthalmology (623)
- Orthopedics (254)
- Otolaryngology (316)
- Pain Medicine (265)
- Palliative Medicine (81)
- Pathology (485)
- Pediatrics (1169)
- Primary Care Research (481)
- Public and Global Health (6752)
- Radiology and Imaging (1484)
- Respiratory Medicine (897)
- Rheumatology (430)
- Sports Medicine (365)
- Surgery (471)
- Toxicology (57)
- Transplantation (200)
- Urology (173)