KidneyNetwork: Using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease
View ORCID ProfileFloranne Boulogne, View ORCID ProfileLaura R. Claus, View ORCID ProfileHenry Wiersma, View ORCID ProfileRoy Oelen, Floor Schukking, View ORCID ProfileNiek de Klein, View ORCID ProfileShuang Li, View ORCID ProfileHarm-Jan Westra, Bert van der Zwaag, Franka van Reekum, Dana Sierks, View ORCID ProfileRia Schönauer, View ORCID ProfileJan Halbritter, View ORCID ProfileNine V.A.M. Knoers, Genomics England Research Consortium, View ORCID ProfilePatrick Deelen, View ORCID ProfileLude Franke, View ORCID ProfileAlbertien M. van Eerde
doi: https://doi.org/10.1101/2021.03.10.21253054
Floranne Boulogne
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Laura R. Claus
2Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
Henry Wiersma
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Roy Oelen
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Floor Schukking
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Niek de Klein
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Shuang Li
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
3Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
Harm-Jan Westra
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Bert van der Zwaag
2Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
Franka van Reekum
4Department of Nephrology, University Medical Center Utrecht, Utrecht, the Netherlands
Dana Sierks
5Medical Department III - Endocrinology, Nephrology, Rheumatology Department of Internal Medicine, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
Ria Schönauer
5Medical Department III - Endocrinology, Nephrology, Rheumatology Department of Internal Medicine, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
Jan Halbritter
5Medical Department III - Endocrinology, Nephrology, Rheumatology Department of Internal Medicine, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
Nine V.A.M. Knoers
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Patrick Deelen
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
2Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
Lude Franke
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Albertien M. van Eerde
2Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
Data Availability
To make the gene-co-regulation-based HPO predictions publicly available a website was constructed: https://kidney.genenetwork.nl/. Informed consent did not cover uploading exome sequencing data from patients.
Posted May 31, 2021.
KidneyNetwork: Using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease
Floranne Boulogne, Laura R. Claus, Henry Wiersma, Roy Oelen, Floor Schukking, Niek de Klein, Shuang Li, Harm-Jan Westra, Bert van der Zwaag, Franka van Reekum, Dana Sierks, Ria Schönauer, Jan Halbritter, Nine V.A.M. Knoers, Genomics England Research Consortium, Patrick Deelen, Lude Franke, Albertien M. van Eerde
medRxiv 2021.03.10.21253054; doi: https://doi.org/10.1101/2021.03.10.21253054
KidneyNetwork: Using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease
Floranne Boulogne, Laura R. Claus, Henry Wiersma, Roy Oelen, Floor Schukking, Niek de Klein, Shuang Li, Harm-Jan Westra, Bert van der Zwaag, Franka van Reekum, Dana Sierks, Ria Schönauer, Jan Halbritter, Nine V.A.M. Knoers, Genomics England Research Consortium, Patrick Deelen, Lude Franke, Albertien M. van Eerde
medRxiv 2021.03.10.21253054; doi: https://doi.org/10.1101/2021.03.10.21253054
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (708)
- Anesthesia (201)
- Cardiovascular Medicine (2931)
- Dermatology (249)
- Emergency Medicine (439)
- Epidemiology (12734)
- Forensic Medicine (12)
- Gastroenterology (827)
- Genetic and Genomic Medicine (4578)
- Geriatric Medicine (417)
- Health Economics (729)
- Health Informatics (2914)
- Health Policy (1069)
- Hematology (388)
- HIV/AIDS (924)
- Medical Education (424)
- Medical Ethics (115)
- Nephrology (468)
- Neurology (4345)
- Nursing (236)
- Nutrition (638)
- Oncology (2266)
- Ophthalmology (645)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (500)
- Pediatrics (1196)
- Primary Care Research (495)
- Public and Global Health (6932)
- Radiology and Imaging (1526)
- Respiratory Medicine (915)
- Rheumatology (437)
- Sports Medicine (385)
- Surgery (487)
- Toxicology (60)
- Transplantation (210)
- Urology (180)