Uncovering interpretable potential confounders in electronic medical records
View ORCID ProfileJiaming Zeng, Michael F. Gensheimer, Daniel L. Rubin, Susan Athey, Ross D. Shachter
doi: https://doi.org/10.1101/2021.02.03.21251034
Jiaming Zeng
*Department of Management Science and Engineering, Stanford University
Michael F. Gensheimer
†School of Medicine, Stanford University
Daniel L. Rubin
†School of Medicine, Stanford University
Susan Athey
‡Graduate School of Business, Stanford University
Ross D. Shachter
*Department of Management Science and Engineering, Stanford University
Data Availability
The data is not available for sharing.
Posted February 05, 2021.
Uncovering interpretable potential confounders in electronic medical records
Jiaming Zeng, Michael F. Gensheimer, Daniel L. Rubin, Susan Athey, Ross D. Shachter
medRxiv 2021.02.03.21251034; doi: https://doi.org/10.1101/2021.02.03.21251034
Subject Area
Subject Areas
- Addiction Medicine (396)
- Allergy and Immunology (708)
- Anesthesia (200)
- Cardiovascular Medicine (2911)
- Dermatology (249)
- Emergency Medicine (438)
- Epidemiology (12687)
- Forensic Medicine (10)
- Gastroenterology (825)
- Genetic and Genomic Medicine (4546)
- Geriatric Medicine (413)
- Health Economics (723)
- Health Informatics (2901)
- Health Policy (1067)
- Hematology (383)
- HIV/AIDS (920)
- Medical Education (422)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4313)
- Nursing (233)
- Nutrition (633)
- Oncology (2253)
- Ophthalmology (641)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (277)
- Palliative Medicine (83)
- Pathology (496)
- Pediatrics (1193)
- Primary Care Research (492)
- Public and Global Health (6901)
- Radiology and Imaging (1519)
- Respiratory Medicine (913)
- Rheumatology (435)
- Sports Medicine (381)
- Surgery (483)
- Toxicology (60)
- Transplantation (209)
- Urology (178)