App-based symptom tracking to optimize SARS-CoV-2 testing strategy using machine learning
View ORCID ProfileLeila F. Dantas, View ORCID ProfileIgor T. Peres, View ORCID ProfileLeonardo S. L. Bastos, View ORCID ProfileJanaina F. Marchesi, Guilherme F. G. de Souza, João Gabriel M. Gelli, View ORCID ProfileFernanda A. Baião, Paula Maçaira, View ORCID ProfileSilvio Hamacher, View ORCID ProfileFernando A. Bozza
doi: https://doi.org/10.1101/2020.09.01.20186049
Leila F. Dantas
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Igor T. Peres
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Leonardo S. L. Bastos
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Janaina F. Marchesi
2Instituto Tecgraf, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Guilherme F. G. de Souza
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
João Gabriel M. Gelli
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Fernanda A. Baião
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Paula Maçaira
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Silvio Hamacher
1Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Fernando A. Bozza
3National Institute of Infectious Diseases Evandro Chagas (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
4D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
Data Availability
The data that support the findings of this study are available from "Dados do Bem" but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of "Dados do Bem".
Posted September 03, 2020.
App-based symptom tracking to optimize SARS-CoV-2 testing strategy using machine learning
Leila F. Dantas, Igor T. Peres, Leonardo S. L. Bastos, Janaina F. Marchesi, Guilherme F. G. de Souza, João Gabriel M. Gelli, Fernanda A. Baião, Paula Maçaira, Silvio Hamacher, Fernando A. Bozza
medRxiv 2020.09.01.20186049; doi: https://doi.org/10.1101/2020.09.01.20186049
App-based symptom tracking to optimize SARS-CoV-2 testing strategy using machine learning
Leila F. Dantas, Igor T. Peres, Leonardo S. L. Bastos, Janaina F. Marchesi, Guilherme F. G. de Souza, João Gabriel M. Gelli, Fernanda A. Baião, Paula Maçaira, Silvio Hamacher, Fernando A. Bozza
medRxiv 2020.09.01.20186049; doi: https://doi.org/10.1101/2020.09.01.20186049
Subject Area
Subject Areas
- Addiction Medicine (400)
- Allergy and Immunology (711)
- Anesthesia (202)
- Cardiovascular Medicine (2955)
- Dermatology (250)
- Emergency Medicine (443)
- Epidemiology (12767)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4602)
- Geriatric Medicine (420)
- Health Economics (731)
- Health Informatics (2934)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (927)
- Medical Education (428)
- Medical Ethics (116)
- Nephrology (471)
- Neurology (4379)
- Nursing (237)
- Nutrition (640)
- Oncology (2279)
- Ophthalmology (648)
- Orthopedics (258)
- Otolaryngology (326)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1198)
- Primary Care Research (499)
- Public and Global Health (6965)
- Radiology and Imaging (1535)
- Respiratory Medicine (916)
- Rheumatology (442)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (182)