Using Supervised Machine Learning and Empirical Bayesian Kriging to reveal Correlates and Patterns of COVID-19 Disease outbreak in sub-Saharan Africa: Exploratory Data Analysis
View ORCID ProfileAmobi Andrew Onovo, Akinyemi Atobatele, Abiye Kalaiwo, Christopher Obanubi, Ezekiel James, Pamela Gado, Gertrude Odezugo, Dolapo Ogundehin, Doreen Magaji, Michele Russell
doi: https://doi.org/10.1101/2020.04.27.20082057
Amobi Andrew Onovo
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
3Faculty of Medicine, Global Health Institute, University of Geneva, Switzerland
Akinyemi Atobatele
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Abiye Kalaiwo
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Christopher Obanubi
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Ezekiel James
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Pamela Gado
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Gertrude Odezugo
2Office of Health, Population and Nutrition, U.S Agency for International Development, Nigeria
Dolapo Ogundehin
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Doreen Magaji
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Michele Russell
1Office of HIV/AIDS and TB, U.S Agency for International Development, Nigeria
Data Availability
Data used for this analysis was obtained from the COVID-19 Data Resource Hub established by the Tableau community and included near real-time data compiled by Johns Hopkins University. Additional data from socio-demographic and health indicator surveys was derived from web resources of the World Bank, UNICEF, WHO and UNAIDS. All data used are publicly available, and sources are cited throughout.
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data
Posted May 02, 2020.
Using Supervised Machine Learning and Empirical Bayesian Kriging to reveal Correlates and Patterns of COVID-19 Disease outbreak in sub-Saharan Africa: Exploratory Data Analysis
Amobi Andrew Onovo, Akinyemi Atobatele, Abiye Kalaiwo, Christopher Obanubi, Ezekiel James, Pamela Gado, Gertrude Odezugo, Dolapo Ogundehin, Doreen Magaji, Michele Russell
medRxiv 2020.04.27.20082057; doi: https://doi.org/10.1101/2020.04.27.20082057
Using Supervised Machine Learning and Empirical Bayesian Kriging to reveal Correlates and Patterns of COVID-19 Disease outbreak in sub-Saharan Africa: Exploratory Data Analysis
Amobi Andrew Onovo, Akinyemi Atobatele, Abiye Kalaiwo, Christopher Obanubi, Ezekiel James, Pamela Gado, Gertrude Odezugo, Dolapo Ogundehin, Doreen Magaji, Michele Russell
medRxiv 2020.04.27.20082057; doi: https://doi.org/10.1101/2020.04.27.20082057
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (2997)
- Dermatology (256)
- Emergency Medicine (448)
- Epidemiology (12894)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4690)
- Geriatric Medicine (432)
- Health Economics (739)
- Health Informatics (2982)
- Health Policy (1081)
- Hematology (397)
- HIV/AIDS (942)
- Medical Education (439)
- Medical Ethics (116)
- Nephrology (481)
- Neurology (4480)
- Nursing (239)
- Nutrition (656)
- Oncology (2327)
- Ophthalmology (659)
- Orthopedics (262)
- Otolaryngology (330)
- Pain Medicine (289)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1216)
- Primary Care Research (509)
- Public and Global Health (7069)
- Radiology and Imaging (1570)
- Respiratory Medicine (932)
- Rheumatology (454)
- Sports Medicine (390)
- Surgery (496)
- Toxicology (62)
- Transplantation (214)
- Urology (186)