Automated Localization and Segmentation of Mononuclear Cell Aggregates in Kidney Histological Images Using Deep Learning
View ORCID ProfileDmytro S. Lituiev, Sung Jik Cha, Aaron Chin, Benjamin S. Glicksberg, Andrew Bishara, Dejan Dobi, Ruizhe (Ryan) Cheng, Jae Ho Sohn, Zoltan Laszik, Dexter Hadley
doi: https://doi.org/10.1101/19002634
Dmytro S. Lituiev
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
Sung Jik Cha
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
Aaron Chin
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
Benjamin S. Glicksberg
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
Andrew Bishara
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
Dejan Dobi
2Department of Pathology, University of California, San Francisco, CA, USA
Ruizhe (Ryan) Cheng
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
3University of California, Berkeley, San Francisco, CA, USA
Jae Ho Sohn
4Department of Radiology, University of California, San Francisco, CA, USA
Zoltan Laszik
2Department of Pathology, University of California, San Francisco, CA, USA
Dexter Hadley
1Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
5Department of Pediatrics, University of California, San Francisco, CA, USA
Data Availability
The code is available on Github and model weights are available upon request.
Posted July 20, 2019.
Automated Localization and Segmentation of Mononuclear Cell Aggregates in Kidney Histological Images Using Deep Learning
Dmytro S. Lituiev, Sung Jik Cha, Aaron Chin, Benjamin S. Glicksberg, Andrew Bishara, Dejan Dobi, Ruizhe (Ryan) Cheng, Jae Ho Sohn, Zoltan Laszik, Dexter Hadley
medRxiv 19002634; doi: https://doi.org/10.1101/19002634
Automated Localization and Segmentation of Mononuclear Cell Aggregates in Kidney Histological Images Using Deep Learning
Dmytro S. Lituiev, Sung Jik Cha, Aaron Chin, Benjamin S. Glicksberg, Andrew Bishara, Dejan Dobi, Ruizhe (Ryan) Cheng, Jae Ho Sohn, Zoltan Laszik, Dexter Hadley
medRxiv 19002634; doi: https://doi.org/10.1101/19002634
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (2995)
- Dermatology (254)
- Emergency Medicine (448)
- Epidemiology (12891)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4685)
- Geriatric Medicine (431)
- Health Economics (738)
- Health Informatics (2981)
- Health Policy (1081)
- Hematology (396)
- HIV/AIDS (942)
- Medical Education (437)
- Medical Ethics (116)
- Nephrology (479)
- Neurology (4474)
- Nursing (239)
- Nutrition (656)
- Oncology (2323)
- Ophthalmology (659)
- Orthopedics (261)
- Otolaryngology (330)
- Pain Medicine (289)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1213)
- Primary Care Research (509)
- Public and Global Health (7061)
- Radiology and Imaging (1570)
- Respiratory Medicine (930)
- Rheumatology (450)
- Sports Medicine (389)
- Surgery (495)
- Toxicology (61)
- Transplantation (214)
- Urology (186)