Abstract
Background Hematoxylin and eosin (H&E) staining is widely considered to be the gold-standard diagnostic tool for histopathology evaluation. However, the fatty nature of some tissue types, such as breast tissue, presents challenges with cryo-sectioning, often resulting in artifacts that can make histopathologic interpretation and correlation with other imaging modalities virtually impossible. We present an optimized on-block H&E staining technique that improves contrast for identifying collagenous stroma during cryo-fluorescence tomography (CFT) sectioning.
Approach In this prospective study, we embedded four breast specimens with confirmed ligaments from a bilateral mastopexy in an optimal cutting temperature block. Two of the samples were processed on a CFT imager and stained with our on-block staining protocol. In this protocol, hematoxylin was applied to the block face before being washed with deionized water. Eosin was then applied and washed with 95% ethanol. We then applied mounting medium and acquired images with a stereo-dissecting microscope and camera. Prior to staining, GFP fluorescence and white-light images were acquired with the CFT system to serve as a validation metric. The other two samples were sectioned on a standard cryostat and stained according to gold-standard H&E protocol. The resulting microscope slides were imaged with a digital slide scanner and viewed with Leica Imagescope software. An experienced pathologist evaluated both sets of images for qualitative comparisons.
Results Pathologist evaluation confirmed that striations from on-block staining were qualitatively comparable with collagen tracks identified in gold-standard histology images. Furthermore, GFP images captured collagen autofluorescence, which aligned with the same structures identified by our on-block staining protocol.
Conclusion Our on-block staining technique shows comparable visualization of collagenous structures at the mesoscopic level for fresh breast tissue samples. This technique improves tissue contrast and region of interest selection for histology during CFT imaging for analysis of the stromal architecture of the breast.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by the National Institutes of Health/NCI under award number P30CA016672 and the Small Animal Imaging Facility Core, the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award number R01EB032533, and the Image Guided Cancer Therapy Research Program at The University of Texas MD Anderson Cancer Center through a generous gift from the Apache Corporation.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB protocol PA16-0364_MOD006 of MD Anderson Cancer Center gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
Any data is available upon request in compliance with institutional IRB requirements.
Data Availability
Any data is available upon request in compliance with institutional IRB requirements.