Abstract
No existing algorithm can reliably identify metastasis from pathology reports across multiple cancer types and the entire US population. In this study, we develop a deep learning model that automatically detects patients with metastatic cancer by using pathology reports from many laboratories and of multiple cancer types. We trained and validated our model on a cohort of 29,632 patients from four Surveillance, Epidemiology, and End Results (SEER) registries linked to 60,471 unstructured pathology reports. Our deep learning architecture trained on task-specific data outperforms a general-purpose LLM, with a recall of 0.894 compared to 0.824. We quantified model uncertainty and used it to defer reports for human review. We found that retaining 72.9% of reports increased recall from 0.894 to 0.969. This approach could streamline population-based cancer surveillance to help address the unmet need to capture recurrence or progression.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work has been supported in part by the US Department of Energy (DOE) and the NCI of the National Institutes of Health. This work was performed under the auspices of the DOE by Oak Ridge National Laboratory under Contract DE-AC05-00OR22725.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB DOE000152 of Department of Energy gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.