ABSTRACT
T follicular helper (Tfh) cells are crucial for B cell activation and subsequent antibody production. This functionality is influenced by surface markers such as CD40L, a costimulatory factor which promotes B cell activation, and CD57 which is a well-known marker of senescence. This study examined age-specific differences in Tfh cell function in Bangladeshi and American children. At age two, Bangladeshi children displayed impaired CD40L upregulation and significant CD57 downregulation upon stimulation. These patterns, not observed in American children of the same age, suggested an exhaustion-like phenotype potentially driven by environmental factors. Predictors of Tfh cell response to stimulation were analyzed using Random Forest and Generalized Estimating Equations (GEE) models. Exclusive breastfeeding duration, antibiotic treatments, diarrheal episodes, and malnutrition were identified as variables that significantly impacted the Tfh response to stimuli. To assess Tfh cell ability to promote antibody responses, we correlated Tfh functionality with antibody concentration post-vaccination and in response to infection with Cryptosporidium, an endemic apicomplexan parasite. Increased CD40L expression upon stimulation correlated positively with anti-Poliovirus type 2/3 neutralizing antibody and anti-Cp17 (a Cryptos-poridium sporozoite antigen) IgA concentrations. In contrast, increased CD57 expression was significantly correlated with decreased anti-Cp17 IgA. This indicates that an activation-supportive phenotype (CD40L+) may be more effective in promoting immunity than a senescent phenotype (CD57+). Together, these findings suggest that early-life environmental exposures may program Tfh cell functionality, impacting immune response potential in settings with high pathogen exposure.
IMPORTANCE T follicular helper (Tfh) cells are upstream mediators that shape the humoral immune response to specific antigens. The generation of an effective memory response to infection is vital to prevent subsequent reinfections. However, in areas with high burdens of exposure to infections, such as the urban community from Bangladesh studied here, children are consistently exposed to inflammatory pathogens. Specific environmental exposures significantly influenced Tfh cell activation and senescence phenotypes. Additionally, Tfh cell responses correlated with antibody concentrations following vaccination or infection, indicating that environmental factors may play a critical role in shaping effective immunity in early childhood.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Bill and Melinda Gates Foundation (OPP1113682) and NIH grant AI04356.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics Review Committee at the ICDDRB,B and at Institutional Review Boards at the University of Virginia, University of Vermont, and Stanford University gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors. CyTOF data is available online in the Flow Repository database (Experiment ID: FR-FCM-ZYV8).