Abstract
Homologous recombination-deficient (HRD) high-grade serous ovarian cancers (HGSC) are more sensitive to PARP inhibitors compared to their homologous recombination-proficient counterparts. To match the right drug with the right patient the HRD status must be accurately determined. Functional HRD assays, which assess HRD status by quantifying RAD51, a key homologous recombination (HR) protein, are a promising approach for identifying HRD cases. However, these tests are yet to be optimized for pre-analytical variables, specifically HGSC tissue sampling protocols, which can impact RAD51 signal measurement. In this study, we systematically analyzed the impact of ischemic time on formalin-fixed paraffin-embedded HGSC specimens. We demonstrate that the maximum length of ischemic time compatible with accurate HRD calls is 2 hours post-excision. Our findings highlight the importance of properly monitoring and recording sample handling processes, particularly in HGSC, and warrant caution when using archival tumor material where this information is unavailable. Non-optimal pre-analytical factors like ischemic time can cause false HRD calls, thus leading to incorrect patient stratification, which may result in the initiation of treatments with potential side effects without a therapeutic benefit.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT04846933, NCT06117384
Funding Statement
This study was funded by the Cancer Foundation Finland (L.K.) the Sigrid Juselius Foundation (L. K.) the European Unions Horizon 2020 program to (grant number 965193, DECIDER project) and the Research Council of Finland s iCAN Digital Precision Cancer Medicine Flagship project.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics Committee of Helsinki University Hospital, (HUS334/2021) gave ethical approval for this work. The study was approved by the ethics boards of the Wellbeing Services county of Southwest Finland (VARHA/28314/13.02.02/2023)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.