Acute myeloid leukemia risk stratification in younger and older patients through transcriptomic machine learning models
Raíssa Silva, Cédric Riedel, Maïlis Amico, Jerome Reboul, Benoit Guibert, Camelia Sennaoui, Florence Ruffle, Nicolas Gilbert, Anthony Boureux, Thérèse Commes
doi: https://doi.org/10.1101/2024.11.13.24317248
Raíssa Silva
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Cédric Riedel
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Maïlis Amico
1Université de Montpellier, Montpellier, 34000, France
3Clinical Research and Epidemiology Unit, University of Montpellier Hospital Centre, Montpellier, 34090, France
Jerome Reboul
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Benoit Guibert
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Camelia Sennaoui
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Florence Ruffle
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Nicolas Gilbert
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Anthony Boureux
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Thérèse Commes
1Université de Montpellier, Montpellier, 34000, France
2Institute of Regenerative Medicine and Biotherapies, Montpellier, 34295, France
Article usage
Posted November 13, 2024.
Acute myeloid leukemia risk stratification in younger and older patients through transcriptomic machine learning models
Raíssa Silva, Cédric Riedel, Maïlis Amico, Jerome Reboul, Benoit Guibert, Camelia Sennaoui, Florence Ruffle, Nicolas Gilbert, Anthony Boureux, Thérèse Commes
medRxiv 2024.11.13.24317248; doi: https://doi.org/10.1101/2024.11.13.24317248
Acute myeloid leukemia risk stratification in younger and older patients through transcriptomic machine learning models
Raíssa Silva, Cédric Riedel, Maïlis Amico, Jerome Reboul, Benoit Guibert, Camelia Sennaoui, Florence Ruffle, Nicolas Gilbert, Anthony Boureux, Thérèse Commes
medRxiv 2024.11.13.24317248; doi: https://doi.org/10.1101/2024.11.13.24317248
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (2995)
- Dermatology (254)
- Emergency Medicine (447)
- Epidemiology (12891)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4683)
- Geriatric Medicine (431)
- Health Economics (738)
- Health Informatics (2979)
- Health Policy (1081)
- Hematology (396)
- HIV/AIDS (942)
- Medical Education (437)
- Medical Ethics (116)
- Nephrology (479)
- Neurology (4472)
- Nursing (239)
- Nutrition (656)
- Oncology (2322)
- Ophthalmology (659)
- Orthopedics (261)
- Otolaryngology (330)
- Pain Medicine (289)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1212)
- Primary Care Research (509)
- Public and Global Health (7060)
- Radiology and Imaging (1569)
- Respiratory Medicine (930)
- Rheumatology (448)
- Sports Medicine (389)
- Surgery (495)
- Toxicology (61)
- Transplantation (214)
- Urology (186)