Machine learning predicts liver cancer risk from routine clinical data: a large population-based multicentric study
Jan Clusmann, Paul-Henry Koop, David Y. Zhang, Felix van Haag, Omar S. M. El Nahhas, Tobias Seibel, Laura Žigutytė, Apichat Kaewdech, Julien Calderaro, Frank Tacke, Tom Luedde, Daniel Truhn, Tony Bruns, Kai Markus Schneider, Jakob N. Kather, Carolin V. Schneider
doi: https://doi.org/10.1101/2024.11.03.24316662
Jan Clusmann
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
2Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
Paul-Henry Koop
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
David Y. Zhang
3Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
4Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
Felix van Haag
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
Omar S. M. El Nahhas
2Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
5StratifAI GmbH, Dresden, Germany
Tobias Seibel
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
Laura Žigutytė
2Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
Apichat Kaewdech
6Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
Julien Calderaro
7Université Paris Est Créteil, INSERM, IMRB, F-94010, Créteil, France
8Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
9Inserm, U955, Team 18, Créteil, France
10European Reference Network (ERN) RARE-LIVER, Créteil, France
Frank Tacke
11Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
Tom Luedde
12Department for Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Germany
Daniel Truhn
13Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Germany
Tony Bruns
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
Kai Markus Schneider
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
2Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
14Department of Medicine I, University Hospital Dresden, Dresden, Germany
15Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU), Dresden, Germany
Jakob N. Kather
2Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
14Department of Medicine I, University Hospital Dresden, Dresden, Germany
16Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidel- berg, Germany
Carolin V. Schneider
1Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
Article usage
Posted November 04, 2024.
Machine learning predicts liver cancer risk from routine clinical data: a large population-based multicentric study
Jan Clusmann, Paul-Henry Koop, David Y. Zhang, Felix van Haag, Omar S. M. El Nahhas, Tobias Seibel, Laura Žigutytė, Apichat Kaewdech, Julien Calderaro, Frank Tacke, Tom Luedde, Daniel Truhn, Tony Bruns, Kai Markus Schneider, Jakob N. Kather, Carolin V. Schneider
medRxiv 2024.11.03.24316662; doi: https://doi.org/10.1101/2024.11.03.24316662
Machine learning predicts liver cancer risk from routine clinical data: a large population-based multicentric study
Jan Clusmann, Paul-Henry Koop, David Y. Zhang, Felix van Haag, Omar S. M. El Nahhas, Tobias Seibel, Laura Žigutytė, Apichat Kaewdech, Julien Calderaro, Frank Tacke, Tom Luedde, Daniel Truhn, Tony Bruns, Kai Markus Schneider, Jakob N. Kather, Carolin V. Schneider
medRxiv 2024.11.03.24316662; doi: https://doi.org/10.1101/2024.11.03.24316662
Subject Area
Subject Areas
- Addiction Medicine (386)
- Allergy and Immunology (701)
- Anesthesia (193)
- Cardiovascular Medicine (2859)
- Dermatology (244)
- Emergency Medicine (431)
- Epidemiology (12569)
- Forensic Medicine (10)
- Gastroenterology (807)
- Genetic and Genomic Medicine (4447)
- Geriatric Medicine (402)
- Health Economics (716)
- Health Informatics (2856)
- Health Policy (1050)
- Hematology (376)
- HIV/AIDS (893)
- Medical Education (415)
- Medical Ethics (114)
- Nephrology (464)
- Neurology (4201)
- Nursing (223)
- Nutrition (617)
- Oncology (2205)
- Ophthalmology (626)
- Orthopedics (254)
- Otolaryngology (319)
- Pain Medicine (269)
- Palliative Medicine (83)
- Pathology (488)
- Pediatrics (1172)
- Primary Care Research (483)
- Public and Global Health (6787)
- Radiology and Imaging (1494)
- Respiratory Medicine (902)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (202)
- Urology (174)