Abstract
As we age, many tissues become colonised by microscopic clones carrying somatic driver mutations (1–10. Some of these clones represent a first step towards cancer whereas others may contribute to ageing and other diseases. However, our understanding of the clonal landscapes of human tissues, and their impact on cancer risk, ageing and disease, remains limited due to the challenge of detecting somatic mutations present in small numbers of cells. Here, we introduce a new version of nanorate sequencing (NanoSeq)11, a duplex sequencing method with error rates <5 errors per billion base pairs, which is compatible with whole-exome and targeted gene sequencing. Deep sequencing of polyclonal samples with single-molecule sensitivity enables the simultaneous detection of mutations in large numbers of clones, yielding accurate somatic mutation rates, mutational signatures and driver mutation frequencies in any tissue. Applying targeted NanoSeq to 1,042 non-invasive samples of oral epithelium and 371 samples of blood from a twin cohort, we found an unprecedentedly rich landscape of selection, with 49 genes under positive selection driving clonal expansions in the oral epithelium, over 62,000 driver mutations, and evidence of negative selection in some genes. The high number of positively selected mutations in multiple genes provides high-resolution maps of selection across coding and non-coding sites, a form of in vivo saturation mutagenesis. Multivariate regression models enable mutational epidemiology studies on how carcinogenic exposures and cancer risk factors, such as age, tobacco or alcohol, alter the acquisition and selection of somatic mutations. Accurate single-molecule sequencing has the potential to unveil the polyclonal landscape of any tissue, providing a powerful tool to study early carcinogenesis, cancer prevention and the role of somatic mutations in ageing and disease.
Competing Interest Statement
I.M., M.R.S., and P.J.C are co-founders, shareholders and consultants for Quotient Therapeutics Ltd.
Funding Statement
I.M. is funded by Cancer Research UK (C57387/A21777), the Dr Josef Steiner Cancer Research Foundation and the Wellcome Trust. TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd, the National Institute for Health and Care Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was carried out under TwinsUK BioBank ethics, approved by North West Liverpool Central Research Ethics Committee (REC reference 19/NW/0187), IRAS ID 258513 and earlier approvals granted to TwinsUK by the St Thomas' Hospital Research Ethics Committee, later London Westminster Research Ethics Committee (REC reference EC04/015).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study will be available through managed access via the TwinsUK Resource Executive Committee (TREC).