Abstract
Motivation Nearly two decades of genome-wide association studies (GWAS) have identify thousands of disease-associated genetic variants, but very few genes with evidence of causality. Recent methodological advances demonstrate that Mendelian Randomization (MR) using expression quantitative loci (eQTLs) as instrumental variables can detect potential causal genes. However, existing MR approaches are not well suited to handle the complexity of eQTL GWAS data structure and so they are subject to bias, inflation, and incorrect inference.
Results We present a whole-genome regulatory network analysis tool (HORNET), which is a comprehensive set of statistical and computational tools to perform genome-wide searches for causal genes using summary level GWAS data that is robust to biases from multiple sources. Applying HORNET to schizophrenia, we identified differential magnitudes of gene expression causality. Applying HORNET to schizophrenia, we identified differential magnitudes of gene expression causality across different brain tissues.
Availability and Implementation Freely available at https://github.com/noahlorinczcomi/HORNETor Mac, Windows, and Linux users.
Contact njl96{at}case.edu.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by grant HG011052 and HG011052-03S1 (to X.Z.) from the National Human Genome Research Institute (NHGRI), USA. N. L-C. was partially supported by grant T32 HL007567 from the National Heart, Lung, and Blood Institute (NHLBI).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data generated by the study is available at our Github page.