Abstract
Background Chronic disease microsimulation models often simulate disease incidence as a function of risk factors that evolve over time (e.g., blood pressure increasing with age) in order to facilitate decision analyses of different disease screening and prevention strategies. Existing models typically rely on incidence rates estimated with standard survival analysis techniques (e.g., proportional hazards from baseline data) that are not designed to be continually updated each model cycle. We introduce the use of joint longitudinal and time-to-event to parameterize microsimulations to avoid potential issues from using these existing methods. These joint models include random effects regressions to estimate the risk factor trajectories and a survival model to predict disease risk based on those estimated trajectories. In a case study on cardiovascular disease (CVD), we compare the validity of microsimulation models parameterized with this joint model approach to those parameterized with the standard approaches.
Methods A CVD microsimulation model was constructed that modeled the trajectory of seven CVD risk factors/predictors as a function of age (smoking, diabetes, systolic blood pressure, antihypertensive medication use, total cholesterol, HDL, and statin use) and predicted yearly CVD incidence as a function of these predictors, plus age, sex, and race. We parameterized the model using data from the Atherosclerosis Risk in Communities study (ARIC). The risk of CVD in the microsimulation was parameterized with three approaches: (1) joint longitudinal and time-to-event model, (2) proportional hazards model estimated using baseline data, and (3) proportional hazards model estimated using time-varying data. We accounted for non-CVD mortality across all the parameterization approaches. We simulated risk factor trajectories and CVD incidence from age 70y to 85y for an external test set comprised of individuals from the Multi-Ethnic Study of Atherosclerosis (MESA). We compared the simulated to observed incidence using both average survival curves and the E50 and E90 calibration metrics (the median and 90th percentile absolute difference between observed and predicted incidence) to measure the validity of each parameterization approach.
Results The average CVD survival curve estimated by the microsimulation model parameterized with the joint model approach matched the observed curve from the test set relatively closely. The other parameterization methods generally performed worse, especially the proportional hazards model estimated using baseline data. Similar results were observed for the calibration metrics, with the joint model performing particularly well on the E90 metric compared to the other models.
Conclusions Using a joint longitudinal and time-to-event model to parameterize a CVD simulation model produced incidence predictions that more accurately reflected observed data than a model parameterized with standard approaches. This parameterization approach could lead to more reliable microsimulation models, especially for models that evaluate policies which depend on tracking dynamic risk factors over time. Beyond this single case study, more work is needed to identify the specific circumstances where the joint model approach will outperform existing methods.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors were supported by the National Institutes of Health (grant No. R01NS104143 to Pandya) and Harvard University (dissertation completition fellowship to Giardina).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Harvard T.H. Chan School of Public Health Institutional Review Board determined that use of the ARIC and MESA data was not human subjects research (IRB18-1797).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data used in the present study are available from the Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) at the National Heart, Lung, and Blood Institute (NHLBI).