Abstract
This study introduces a transfer learning framework to address data scarcity in mortality risk prediction for the UK, where local mortality data is unavailable. By leveraging a pretrained model built from data across eight countries (excluding the UK) and incorporating synthetic data from the country most similar to the UK, our approach extends beyond national boundaries. This framework reduces reliance on local datasets while maintaining strong predictive performance. We evaluate the model using the Continuous Mortality Investigation (CMI) dataset and a drift model to address discrepancies arising from local demographic differences. Our research bridges machine learning and actuarial science, enhancing mortality risk prediction and pricing strategies, particularly in data-poor settings.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The author(s) received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵* asmik.nalmpatian{at}campus.lmu.de
Data Availability
The data are owned by a third party (insurance company) and authors do not have permission to share the data. The sources for external data is described.