Abstract
Psychiatric disorders are complex and influenced by both genetic and environmental factors. However, studying the full spectrum of these disorders is hindered by practical limitations on measuring human behavior. This highlights the need for novel technologies that can measure behavioral changes at an intermediate level between diagnosis and genotype. Wearable devices are a promising tool in precision medicine, since they can record physiological measurements over time in response to environmental stimuli and do so at low cost and minimal invasiveness. Here we analyzed wearable and genetic data from a cohort of the Adolescent Brain Cognitive Development study. We generated >250 wearable-derived features and used them as intermediate phenotypes in an interpretable AI modeling framework to assign risk scores and classify adolescents with psychiatric disorders. Our model identifies key physiological processes and leverages their temporal patterns to achieve a higher performance than has been previously possible. To investigate how these physiological processes relate to the underlying genetic architecture of psychiatric disorders, we also utilized these intermediate phenotypes in univariate and multivariate GWAS. We identified a total of 29 significant genetic loci and 52 psychiatric-associated genes, including ELFN1 and ADORA3. These results show that wearable-derived continuous features enable a more precise representation of psychiatric disorders and exhibit greater detection power compared to categorical diagnostic labels. In summary, we demonstrate how consumer wearable technology can facilitate dimensional approaches in precision psychiatry and uncover etiological linkages between behavior and genetics.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by NIH grants
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵* Co-first authors
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.