ABSTRACT
Background Current methods are insufficient alone for outbreak detection in hospitals. Real-time genomic surveillance using offers the potential to detect otherwise unidentified outbreaks. We initiated and evaluated the Enhanced Detection System for Healthcare-associated Transmission (EDS-HAT), a real-time genomic surveillance program for outbreak detection and mitigation.
Methods This study was conducted at UPMC Presbyterian Hospital from November 2021 to October 2023. Whole genome sequencing (WGS) was performed weekly on healthcare-associated clinical bacterial isolates to identify otherwise undetected outbreaks. Interventions were implemented in real-time based on identified transmission. A clinical and economic impact analysis was conducted to estimate infections averted and net cost savings.
Results There were 3,921 bacterial isolates from patient healthcare-associated infections that underwent WGS, of which 476 (12.1%) clustered into 172 outbreaks (size range 2-16 patients). Of the outbreak isolates, 292 (61.3%) had an identified epidemiological link. Among the outbreaks with interventions, 95.6% showed no further transmission on the intervened transmission route. The impact analysis estimated that, over the two-year period, 62 infections were averted, with gross cost savings of $1,011,146, and net savings of $695,706, which translates to a 3.2-fold return on investment. Probabilistic sensitivity analysis showed EDS-HAT was cost-saving and more effective in 98% of simulations.
Conclusion Real-time genomic surveillance enabled the rapid detection and control of outbreaks in our hospital and resulted in economic benefits and improvement in patient safety. This study demonstrates the feasibility and effectiveness of integrating genomic surveillance into routine infection prevention practice, offering a paradigm shift in healthcare outbreak detection and control.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) (R01AI127472). NIH played no role in data collection, analysis, or interpretation; study design; writing of the manuscript; or decision to submit for publication.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of the University of Pittsburgh gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Illumina sequence data are available at NCBI BioProject PRJNA475751.