Enhancing Dietary Supplement Question Answer via Retrieval-Augmented Generation (RAG) with LLM
View ORCID ProfileYu Hou, View ORCID ProfileRui Zhang
doi: https://doi.org/10.1101/2024.09.11.24313513
Yu Hou
1Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
Rui Zhang
1Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
Posted September 12, 2024.
Enhancing Dietary Supplement Question Answer via Retrieval-Augmented Generation (RAG) with LLM
Yu Hou, Rui Zhang
medRxiv 2024.09.11.24313513; doi: https://doi.org/10.1101/2024.09.11.24313513
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (708)
- Anesthesia (200)
- Cardiovascular Medicine (2915)
- Dermatology (249)
- Emergency Medicine (438)
- Epidemiology (12708)
- Forensic Medicine (12)
- Gastroenterology (826)
- Genetic and Genomic Medicine (4566)
- Geriatric Medicine (414)
- Health Economics (726)
- Health Informatics (2912)
- Health Policy (1068)
- Hematology (385)
- HIV/AIDS (921)
- Medical Education (422)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4330)
- Nursing (234)
- Nutrition (636)
- Oncology (2261)
- Ophthalmology (643)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (278)
- Palliative Medicine (83)
- Pathology (497)
- Pediatrics (1196)
- Primary Care Research (494)
- Public and Global Health (6914)
- Radiology and Imaging (1524)
- Respiratory Medicine (915)
- Rheumatology (436)
- Sports Medicine (382)
- Surgery (484)
- Toxicology (60)
- Transplantation (210)
- Urology (178)