Abstract
Alzheimer’s disease (AD) is a prevalent form of dementia that impacts brain cells. Although its likelihood increases with age, there is no transitional period between its stages. In order to enhance diagnostic precision, physicians rely on clinical judgments derived from interpreting health data, considering demographics, clinical history, and laboratory results to detect AD at an early stage. While patient cognitive tests and demographic information are primarily presented in text, brain scan images are presented in graphic formats. Researchers typically use different classifiers for each data format and then merge the classifier outcomes to maximize classification accuracy and utilize all patient-related data for the final decision. However, this approach leads to low performance, diminishing predictive abilities and model effectiveness.
We propose an innovative approach that combines diverse textual health records (HR) with three-dimensional structural magnetic resonance imaging (3D sMRI) to achieve a similar objective in computer-aided diagnosis, utilizing a novel deep learning technique. Health records, encompassing demographic features like age, gender, apolipoprotein gene, and mini-mental state examination score, are fused with 3D sMRI, enabling a graphic-based deep learning strategy for early AD detection. The fusion of data is accomplished by representing textual information as graphic pipes and integrating them into 3D sMRI, a method referred to as the “pipe-laying” method.
Experimental results from over 4000 sMRI scans of 780 patients in the AD Neuroimaging Initiative (ADNI) dataset demonstrate that the pipe-laying method enhances recognition accuracy rates for Early and Late Mild Cognitive Impairment (MCI) patients, accurately classifying all AD patients. In a 4-class AD diagnosis scenario, accuracy improved from 86.87% when only 3D images were used to 90.00% when 3D sMRI and patient health records were included. Thus, the positive impact of combining 3D sMRI with HR on 4-class AD diagnosis was established.
Competing Interest Statement
The authors have declared that no competing interests exist.
Clinical Protocols
Funding Statement
The author(s) received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
We do not approve sharing the github code page and code information mentioned in the file (until publication acceptance)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Not Applicable
Data Availability
The data is available at http://adni.loni.usc.edu/data-samples/access-data. Data collection and sharing for this project was provided by the Alzheimer”s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer”s Association Alzheimer”s Drug Discovery Foundation Araclon Biotech BioClinica, Inc. Biogen Bristol-Myers Squibb Company CereSpir, Inc. Cogstate Eisai Inc. Elan Pharmaceuticals, Inc. Eli Lilly and Company EuroImmun F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc. Fujirebio GE Healthcare IXICO Ltd. Janssen Alzheimer Immunotherapy Research & Development, LLC. Johnson & Johnson Pharmaceutical Research & Development LLC. Lumosity Lundbeck Merck & Co., Inc. Meso Scale Diagnostics, LLC. NeuroRx Research Neurotrack Technologies Novartis Pharmaceuticals Corporation Pfizer Inc. Piramal Imaging Servier Takeda Pharmaceutical Company and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer”s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.