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18 Abstract

19 Alzheimer’s disease (AD) is a prevalent form of dementia that impacts brain cells. Although its 

20 likelihood increases with age, there is no transitional period between its stages. In order to enhance 

21 diagnostic precision, physicians rely on clinical judgments derived from interpreting health data, 

22 considering demographics, clinical history, and laboratory results to detect AD at an early stage. 

23 While patient cognitive tests and demographic information are primarily presented in text, brain 
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24 scan images are presented in graphic formats. Researchers typically use different classifiers for 

25 each data format and then merge the classifier outcomes to maximize classification accuracy and 

26 utilize all patient-related data for the final decision. However, this approach leads to low 

27 performance, diminishing predictive abilities and model effectiveness.

28 We propose an innovative approach that combines diverse textual health records (HR) with three-

29 dimensional structural magnetic resonance imaging (3D sMRI) to achieve a similar objective in 

30 computer-aided diagnosis, utilizing a novel deep learning technique. Health records, encompassing 

31 demographic features like age, gender, apolipoprotein gene, and mini-mental state examination 

32 score, are fused with 3D sMRI, enabling a graphic-based deep learning strategy for early AD 

33 detection. The fusion of data is accomplished by representing textual information as graphic pipes 

34 and integrating them into 3D sMRI, a method referred to as the “pipe-laying” method.

35 Experimental results from over 4000 sMRI scans of 780 patients in the AD Neuroimaging Initiative 

36 (ADNI) dataset demonstrate that the pipe-laying method enhances recognition accuracy rates for 

37 Early and Late Mild Cognitive Impairment (MCI) patients, accurately classifying all AD patients. 

38 In a 4-class AD diagnosis scenario, accuracy improved from 86.87% when only 3D images were 

39 used to 90.00% when 3D sMRI and patient health records were included. Thus, the positive impact 

40 of combining 3D sMRI with HR on 4-class AD diagnosis was established.

41
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46 Introduction

47 Alzheimer’s disease (AD) is the most common form of dementia, leading to cognitive confusion. 

48 The disease advances gradually, resulting in the deterioration of brain cells, impacting memory and 

49 cognitive functions, and disrupting daily activities. According to data from the World Health 

50 Organization, around 55 million individuals suffer from dementia, with AD constituting 60–70% 

51 of these instances. As the elderly population continues to grow, the number of diagnosed patients 

52 is projected to escalate to 97 million in the foreseeable future. Developed nations currently observe 

53 a 13% prevalence of AD among people aged over 65, and this rate is on the rise (1). Since AD is a 

54 type of dementia with a surreptitious onset in the form of episodic memory loss, its early-stage 

55 diagnosis poses challenges. Although no definitive cure for AD exists, treatment methods have 

56 shown the potential to slow down or even halt disease progression (2). Given that cognitive 

57 impairments become noticeable in later stages, rendering effective treatment challenging, early 

58 diagnosis becomes crucial to apply interventions that can decelerate or even stop the disease's 

59 advancement.

60 Mild cognitive impairment (MCI) is the stage between the anticipated age-related decline in 

61 memory and cognitive function and the more profound deterioration characteristic of dementia. 

62 MCI serves as the intermediary stage and might escalate into dementia as cognitive decline 

63 becomes more severe. However, it remains unclear whether the symptoms observed at this stage 

64 lead to AD. Investigations centered on sMRI images of patients in this stage have revealed 

65 various physical changes in the brain structure. Noteworthy transformations encompass the 

66 shrinkage of the hippocampus, pivotal for learning and memory, increased ventricular space, and 

67 decreased glucose utilization in certain brain regions. Late and early stages of MCI were 

68 established to enhance the comprehension of how MCI impacts Alzheimer's disease. Early Mild 
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69 Cognitive Impairment (EMCI) exhibits distinct traits like amyloid buildup, disruptions in 

70 functional networks, and variations in brain volume. The ADNI findings indicate that individuals 

71 with Late Mild Cognitive Impairment (LMCI) and EMCI face a greater risk of developing 

72 dementia linked to Alzheimer's disease. Contrasted with LMCI patients, those with EMCI 

73 demonstrate more heterogeneous characteristics and are more prone to show negative indicators 

74 of AD pathology. At the EMCI stage, baseline cognitive function and APOE4 positive status 

75 associated with poor cognitive and functional outcomes. In the LMCI phase, the risk of AD 

76 escalates with episodic memory impairment (3).

77 Various learning methods have been developed in this area because of the importance of the early 

78 and accurate diagnosis of AD. In addition to imaging modalities, several other factors may be 

79 linked to the early diagnosis of AD (2,4). Age, gender, education level, speech pattern, retinal 

80 abnormalities, postural kinematic analysis, cerebrospinal biomarkers, neuropsychological 

81 measures, and the values of certain genes are essential factors for disease identification (5). In 

82 addition, different cognitive and reliable clinical test scores (6), such as the mini-mental state 

83 examination, Montreal cognitive assessment, clinical dementia staging score, rey auditory verbal 

84 learning test, everyday cognition test, Alzheimer’s disease rating scale, and logical memory test, 

85 are required to diagnose AD. After the neurological examination, blood tests, and mental tests, 

86 brain imaging should be performed; and in some cases, electroencephalography (EEG), single-

87 photon emission computed tomography (SPECT) lumbar puncture, and psychiatric consultation 

88 may be required (2). Using this information together with learning methods will make diagnosis 

89 faster and more precise (4).

90 The majority of deep learning studies have employed neuroimaging techniques, including 

91 magnetic resonance imaging (MRI) and positron emission tomography (PET). However, studies 
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92 utilizing alternative diagnostic data are scarce, and the majority of proposed methods have been 

93 designed for use with 2D images. Textual and numerical measurement data, aside from images, 

94 are integrated into deep learning approaches for diseases that require early diagnosis. The 

95 incorporation of demographic, genetic, and cognitive score data into the diagnostic process 

96 contributes to a more precise identification of diseases (5,7). 

97 The diagnostic process for cognitive diseases entails the evaluation of a diverse set of data. 

98 Simultaneous and integrated analyses of these data are crucial for early diagnosis. Machine 

99 learning- and deep learning-based applications have incorporated data fusion methods to achieve 

100 this objective (8). Data fusion involves extracting relevant information from a combination of 

101 diverse data originating from various sources. This approach amalgamates multiple data sources to 

102 facilitate comprehensive analysis. Data fusion studies involve merging data of the same type into 

103 different formats and integrating distinct data types into different formats.

104 The data fusion methods suggested in the literature for the diagnosis of AD and MCI stages are 

105 primarily focused on combining different images, such as MRI and PET (9). Analyzing contextual 

106 data such as age, gender, education level, genetics, and cognitive test scores also holds significant 

107 importance in the early disease diagnosis. Simultaneously assessing this data alongside images can 

108 empower healthcare professionals to achieve early diagnoses.

109 This study aimed to create a decision support system for physicians, facilitating the differentiation 

110 between AD and MCI stages through a simultaneous assessment of images and cognitive test 

111 results. To achieve this, textual test results were transformed into 3D pipe image representations 

112 and then fused with 3D structural magnetic resonance imaging (3D sMRI) for each patient. This 

113 combined approach was named "3D sMRI with Health Records" (3DMRIwHR) for 3D images and 

114 "2D sMRI with Health Records” (2DMRIwHR) for 2D images. Given the crucial significance of 
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115 early AD diagnosis, the proposed 3D convolutional neural networks (CNN) model was employed 

116 to classify cognitively normal, early mild cognitive impairment, late mild cognitive impairment, 

117 and AD stages in a multi-class fashion.

118

119 Related work

120 For the early diagnosis of AD, different methods, such as data diversification or model 

121 development, are preferred for the multi-classification of its stages. Demographic information, 

122 cognitive scores, genetic and neuroimaging data are commonly utilized in data diversification 

123 studies. These data are evaluated either as individual features or integrated with the image data.

124 In a study published in 2018 that focused on separate evaluations of various data, it was observed 

125 that the addition of the Mini-Mental State Examination (MMSE) score to MRI improved accuracy 

126 in the classification of healthy controls, MCI, and AD groups using different machine learning 

127 methods (10). Another study conducted in the same year combined MRI, positron emission 

128 tomography (PET), Rey Auditory Verbal Learning Test (RAVLT), Montreal Cognitive 

129 Assessment (MoCA), and Electrocochleography Testing (ECogT) standard neuropsychological 

130 test scores to classify stages such as AD, EMCI, LMCI, and CN (11).

131 Data fusion has found application in various neuroimaging studies, with some combining diverse 

132 image types while only a minority integrates demographic information with images. An example 

133 involves the combination of MRI and PET using a zero-masking strategy, aiming to extract 

134 complementary information from distinct data modalities (12) . Additionally, Punjabi et al. (13) 

135 demonstrated the fusion of MRI and amyloid PET, two widely used imaging modalities. 

136 Preprocessing steps for the scans encompassed MRI bias field signal correction, affine recording, 
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137 and skull stripping. Initially, the methods were individually compared through the utilization of a 

138 3D CNN. In the fusion approach, both imaging datasets underwent parallel processing in separate 

139 branches, with features combined in the latter portion of the network through fully connected (FC) 

140 layers.

141 In 2021, a method based on embedded feature selection and fusion using multi-modal 

142 neuroimaging was proposed for AD diagnosis. By combining MRI, PET, and Cerebrospinal Fluid 

143 (CSF) Factor biomarkers, promising outcomes were obtained for the classification of Healthy 

144 Control, MCI, and AD (14) . It has been suggested that the performance of the method for 

145 multiple classifications of AD can be improved using multi-modal data. In this regard, various 

146 modalities have been developed that combine MRI, PET, cerebrospinal fluid (CSF) biomarkers, 

147 and genetic features. It has been observed that more effective results were achieved regarding the 

148 multi-modal data scored with the linear discriminant analysis method (15).

149 In addition to multi-class studies, another study was conducted wherein different types of data were 

150 integrated into the image, aiming to ascertain the transition from the MCI stage to AD. Through 

151 the fusion of different data formats, Pelka et al. (16) employed a long short-term memory-based 

152 recurrent neural network (RNN) model for image classification. This data fusion study implies that 

153 superior outcomes can be achieved by integrating socio-demographic and medical data for disease 

154 diagnosis. Pelka et al. introduced a branding approach wherein socio-demographic and genetic data 

155 were encoded using markers on 2D MRI to attain a more advanced image representation and reduce 

156 computational load. By employing the ADNI Phase I and Heinz Nixdorf Recall study databases, 

157 the study generated five distinct markers denoting age, gender, education, marital status, and ApoE 

158 ԑ4 gene values. The outcomes of the study, wherein branded and unbranded images from each 

159 marker group underwent separate classification processes, underscored the general impact of 
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160 branded data on specificity, F1-score, and accuracy performance metrics for both the Heinz 

161 Nixdorf Recall and ADNI Phase I databases.

162 Payan and Montana  (17) proposed a two-step approach for feature extraction in a 3D CNN for 

163 the classification of sMRI scans. They built a 3D CNN in which the convolutional layers were 

164 pretrained using a sparse autoencoder, and directly used 3D sMRI as input data. However, 

165 pretraining with the autoencoder was not fine-tuned; therefore, it was suggested that the 

166 performance would have been improved by fine-tuning. The model achieved higher accuracy than 

167 those of previous studies for multiple classifications. Similarly, a deeply supervised and adaptable 

168 3D CNN (DSA-3D CNN) built on a 3D convolutional autoencoder (3D-CAE) was proposed to 

169 capture variations in anatomical sMRI brain scans based on a previous study (18). As a threshold, 

170 the 3D-CAE was pretrained using the CAD-Dementia dataset. The proposed model can learn 

171 general and transferable features in different regions. The Hierarchical Attention-based Deep 

172 Neural Network (HadNet) architecture was suggested for the classification of MRI images that 

173 were normalized and skull-stripped (19).

174 It was concluded that this architecture achieved superior results in terms of sensitivity and 

175 specificity. In another study, demographic information and clinical brain activity test scores were 

176 marked on MRI images as landmarks for multi-classification. The preprocessed images and 

177 landmarks were trained in the CNN model as two separate inputs. During training, the positions of 

178 the landmarks were controlled, and the training of landmarks and images was conducted separately. 

179 Joint learning was implemented during training. The main deficiency is that landmark detection 

180 and landmark-based classification processes are independent (7). The brain images with the 

181 landmark skull in the study included colored data on disease classification. Thus, landmarks should 

182 be learned independently from CNN in unsupervised learning. In a previous study in which binary 
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183 and multi-classifications were made, four classes were used: AD, EMCI, LMCI, and NC (20). In 

184 this study, 75 samples from each class label were used in the experiments.

185 It has been revealed that CNN models outperform machine learning methods in the domain of 

186 medical image classification. Due to their revolutionary capabilities in capturing multi-region 

187 features, CNN are widely used in the medical field to identify different types of diseases using 

188 different medical imaging as input data (21). While a majority of data is in 2D format, like chest 

189 X-rays or bone X-rays, and is well-suited for 2D CNNs. Advanced medical imaging (3D) produced 

190 by sophisticated equipment can be exceptionally well-identified through the utilization of 3D 

191 CNNs. Unlike 2D CNNs, 3D CNNs incorporate cross-layer contexts that are not easily discernible 

192 through visual inspection. A pivotal distinction between 2D and 3D CNNs lies in the fact that 3D 

193 CNNs can retain the spatial information inherent in images. Volumetric CNNs employ 3D filters 

194 and generate a 3D volume output by processing the input through a sequence of convolutional 

195 layers, including activation, pooling, dropout, and FC layers. Consequently, volumetric CNNs 

196 function on the voxels of 3D images while preserving their spatial attributes.

197 Some studies have analyzed health records in conjunction with 3D image data, and the 

198 methodologies they propose involve distinct stages, such as independent feature extraction prior to 

199 classification. The autonomy of these stages leads to increased computational complexity and time 

200 requirements. Consequently, to address the challenges associated with this approach and achieve 

201 early disease diagnosis, this study introduces a method that fuses and simultaneously analyzes 

202 textual clinical data and neuroimaging. Moreover, through classification using a deep learning 

203 model, this method aims to discern the disease-induced patterns within the brain and identify 

204 various stages of MCI and AD. In alignment with this objective, the study also investigates the 

205 influence of health records on early diagnosis, assesses the effectiveness of CNNs in analyzing 
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206 sMRI data, and explores the application of deep learning within the medical domain. The key 

207 contributions of this study are outlined as follows.

208 • Utilizing 3D CNN while preserving the image's spatial information.

209 • The 3DMRIwHR fusion method for combining neuroimages and textual data results in 

210 reduced algorithm complexity and time requirements.

211 • Make use of information between layers for early detection of AD using 3D sMRI 

212 processing

213 • Comparative analysis of classification performance between the 3D and 2D CNN models.

214 • Enhanced early and late MCI diagnosis through the inclusion of HR for both 3D and 2D 

215 sMRI classification.

216

217 Material and methods

218 Data collection

219 The data employed in this study were derived from the ADNI dataset. Initiated in October 2004 

220 under the guidance of Dr. Michael W. Weiner, the ADNI dataset comprises clinical, biochemical, 

221 and genetic biomarkers, along with neuroimaging modalities such as MRI and PET. These 

222 resources can be used for early diagnosis, prevention, and treatment of AD. The study encompassed 

223 the initial six years of the ADNI project, denoted as ADNI 1. Subsequent phases include ADNI 

224 GO (2009-2011), ADNI 2 (2011-2016), and the ongoing ADNI 3 (2016 to the present). Throughout 

225 these stages, image protocols were refined, new participants were incorporated, and diverse data 

226 types were integrated into the project.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.15.24312032doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24312032
http://creativecommons.org/licenses/by/4.0/


227 In this study, a cohort of 780 participants was examined, comprising 178 AD patients, 176 patients 

228 with EMCI, 161 patients with LMCI, and 265 CN patients. The 3D sMRI scans were acquired in 

229 T1-weighted format, with an in-plane spatial size of 1.25 × 1.25 mm² and a thickness of 1.2 mm in 

230 3D MPRAGE format. In addition to neuroimaging data, the study encompassed demographics, 

231 cognitive metrics, and genetic information of the participants. Patient health records, encompassing 

232 demographic factors like age and gender, ApoE-ε4 genetic data, and MMSE cognitive measure 

233 data were fused with 3D sMRI data. Consequently, a 3D CNN model based on 3DMRIwHR images 

234 was deployed to classify the four distinct cognitive states associated with dementia: normal 

235 cognition, early mild cognitive impairment, late mild cognitive impairment, and AD. Table 1 

236 provides details about the participant count and other pertinent information for each group. The 

237 majority of participants were over 65 years old, with MMSE scores exceeding 19, and a greater 

238 prevalence of negative ApoE-ε4 values compared to positive ones.

239 Table  1. Demographic, Cognitive Score and Gene Data of All Subjects

Data Values CN EMCI LMCI AD Total

56-65 5 19 23 12 59

66-75 87 89 57 56 289

76-85 122 60 69 81 332
age

86-95 51 8 12 29 100

female 138 77 75 75 365
gender

male 127 99 86 103 415

0-9 0 0 0 0 0

10-18 0 0 0 10 10

19-24 2 3 33 112 150
MMSE

25-30 263 173 128 56 620

positive 74 75 90 46 285
ApoE ԑ4

negative 191 101 71 132 495
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AD: Alzheimer’s Disease

CN: Cognitively Normal

EMCI: Early Mild Cognitive Impairment

LMCI: Late Mild Cognitive Impairment

MMSE: Mini Mental State Examination

ApoE ԑ4: Apolipoprotein-ԑ4

240

241 Preprocessing

242 Taking computational efficiency into consideration, the initial step involved preprocessing the 

243 images through the utilization of FMRIB Software Library v6.0.5.2. The 3D sMRI data, initially 

244 registered using FMRIB’s Linear Image Registration Tool module, underwent bias field correction 

245 using the FLIRT module. This procedure eliminated the density gradient that could impact the 

246 segmentation algorithm. MRI measurements pertaining to the skull, skin, fat, muscle, neck, and 

247 eyeballs were deemed insignificant for disease identification. A brain extraction tool module was 

248 applied to remove non-brain tissues, including the skull. Subsequently, intensity normalization was 

249 executed to rectify density variations potentially arising due to differing image sizes. The final 

250 preprocessing stage involved resizing the 3D images from 176 × 240 × 256 to 50 × 30 × 20, a 

251 resolution validated in [20]. The adoption of larger image sizes would result in heightened 

252 computational complexity, rendering them unfeasible for implementation on conventional 

253 computers.

254 To compare the impact of fusing health records with MRI scans for multi-class image 

255 classification, both 2D and 3D image data fusion methodologies were employed. From the 

256 preprocessed and unresized 3D images, 2D slices were extracted after skull-stripping. In the final 

257 phase of 2D MRI preprocessing, these slices were saved in PNG format with 256 × 256 pixels.

258 Within the ADNI dataset, subjects with health records encompassing age, gender, ApoE-ε4, and 

259 MMSE are limited and are imbalanced across AD, LMCI, EMCI, and CN categories. Following a 
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260 20% allocation for testing, data augmentation was undertaken to increase the dataset's size for both 

261 the 2D and 3D CNN models. The number of images per class, initially set at 1000, was doubled 

262 through this process. Consequently, the shuffled dataset, encompassing 8000 MRI scans, was 

263 subsequently partitioned into two sets: training and validation.

264 Fusing 3D sMRI with Health Records: 3DMRIwHR Method 

265 In the diagnosis of Alzheimer's disease, a specialist physician conducts a range of examinations 

266 after reviewing the patient's medical history. These examinations encompass neuropsychological, 

267 neurophysiological, genetic, laboratory, neuroimaging, and nuclear medicine tests. Disease 

268 diagnosis isn't solely reliant on neuroimaging; it also involves the analysis of diverse data types. 

269 Healthcare professionals face restricted opportunities to effectively utilize these varied data forms. 

270 Despite the growing body of research on this subject, MRI remains the preferred approach. In this 

271 study, we introduced a method named 3DMRIwHR, which facilitates the assessment of 

272 neuroimaging data by combining demographic, genetic, and cognitive test score outcomes. When 

273 selecting test results represented by 3D-HR markers, factors that heightened the risk of AD 

274 symptoms were considered.

275 3D sMRI contains additional information between layers, a feature not present in 2D sMRI. 

276 However, extracting this information through visual inspection of 3D sMRI images is not trivial. 

277 Machine learning techniques, however, can effectively harness this information. To underscore the 

278 interdimensional impact of the 3D method, a fusion procedure was applied to 2D slices derived 

279 from 3D images within the proposed deep learning model. This approach, utilizing the same data, 

280 is designated as 2DMRIwHR.

281 The approach used in the study encompassed the fusion of text-based information with sMRI scans 

282 through the utilization of 3D volumetric pipe-shaped markers. In marker design, preference was 
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283 given to half and full rectangular prism shapes in black or white, with each color symbolizing 

284 specific attributes. These textual attributes included age, gender, ApoE-ԑ4 gene value, and MMSE 

285 score ranges. Figure 1 illustrates the attribute values associated with these colored volumetric pipes. 

286 The characteristics of the markers utilized in the fusion of 2D images, along with their 

287 corresponding value ranges and arrangement on the image, were applied similarly to the 

288 3DMRIwHR method, with no changes except for spatial criteria. Upon extracting the 2D images 

289 as detailed in the data preprocessing section, they were combined with 2D markers that represented 

290 textual information. This methodology was labeled as 2DMRIwHR. Following this technique’s 

291 application, training was done on the proposed 2D model without including any additional image 

292 enhancements
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293

294 Figure 1. 3D pipe shape coding for health records

295 In this study, four distinct health records — age, gender, MMSE, and ApoE-ԑ4 gene data — were 

296 utilized to construct 3D-HR pipes, as shown in Figure 1. Each of the 3D pipes created using the 

297 3DMRIwHR method had a height of eight pixels, a width of 20 pixels, and a depth of 256 pixels.

298 The processing involved 3D images in NIfTI format, with dimensions of 176 × 240 × 256, carried 

299 out in the axial plane, spanning from pixel points (2, 10) to (10,49). Gaps of size (5 × 4) were 

300 deliberately left between the pipe markers to ensure that volumetric markers did not generate any 

301 erroneous correlations. 3D-HR pipes were located in the corners of the 3D sMRI scans for the 
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302 purpose of data fusion. The corner's selection was such that it didn't impede the 3D brain image. In 

303 the case of the 2DMRIwHR method, 2D planar markers, with dimensions of eight pixels in height 

304 and 20 pixels in width, were employed. The positioning process on the image closely resembled 

305 that of the 3DMRIwHR method.

306 To visualize the Nifti scans, the 3D axial preprocessed and 3DMRIwHR images were transformed 

307 into PNG files, as shown in Figure 2. The 3D-HR pipes representing age, gender, ApoE-ԑ4, and 

308 MMSE scores on the image were placed in a specific order.

309

310 Figure 2. 3D MRI with and without 3D-HR pipes

311 2D MRI images were extracted from the 3D sMRI images by means of slicing. After the slicing 

312 phase, the 2D images in Nifti format were combined with health records using 2D encoding. The 

313 markers employed in the 2D images denoted the same values as those in the 3D-HR pipes. While 

314 the alignment of marker images remained consistent, due to the 2D and planar nature of the images, 

315 the 2D markers were depicted as rectangles, measuring eight pixels in height and 20 pixels in width.

316

317

318
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319 Classification for Decision Support

320 CNNs are a specific type of neural network designed for processing data organized in matrix form. 

321 Convolutional networks have proven effective in real-world applications, yielding satisfactory 

322 outcomes not only with large datasets but also when adeptly modeled for smaller datasets. In the 

323 realm of image processing studies [19,20,22], the architecture of CNN best fits the concept of 

324 learning regional patterns by transforming pixel data into matrices. Given that dementia impacts 

325 specific brain regions, we employed 2D and 3D CNN architectures to classify the four classes, 

326 namely CN, EMCI, LMCI, and AD.

327

328 3D CNN method 

329 The proposed model comprises three 3D convolutional layers and three 3D max pools. Following 

330 these layers, a dropout layer was introduced, succeeded by a flattened layer. At the model's last 

331 layer, there existed an FC layer employing a softmax activation function. The 3D convolutional 

332 layers were all equipped with 3 × 3 × 3 kernels and 1 × 1 × 1 stride values, featuring 64 filters in 

333 the initial two convolutional layers and 128 filters in the final layer. The pooling layer kernels were 

334 all of size 3 × 3 × 3, with stride values set at 2 × 2 × 2. The number of training parameters was 

335 1,710,660, whereas the number of non-trainable parameters was 0. For optimization during 

336 parameter training, the adaptive moment-estimation (ADAM) optimization algorithm was utilized 

337 with a learning rate of 0.001.

338 Since the rectified linear unit (RELU) is currently the most commonly applied function [21], it was 

339 used as the activation function in the three convolutional layers. A dropout value of 0.5 was selected 

340 to mitigate the risk of overfitting. Following the softmax activation function in the final FC layer, 
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341 a 4-class disease classification was executed. The architectural layout of the 3D CNN model can 

342 be observed in Figure 3.

343

344

345 Figure 3. 3D CNN Model Architecture

346

347 2D CNN Method

348 In the 2D CNN model, there were three 2D convolutional layers accompanied by three 2D max 

349 pools. These were followed by a dropout layer, succeeded by a flattened layer. The model's 

350 conclusion included an FC layer employing a softmax activation function. The 2D convolutional 

351 layers all consisted of 3 × 3 kernels with 1 × 1 stride values, with 64 filters present in the initial 

352 two convolutional layers and 128 in the last convolutional layer. The pooling layer kernels were 

353 all 3 × 3 in size, with stride values set at 2 × 2. The number of training parameters was 16,889,284, 

354 whereas the number of non-trainable parameters was 0. An optimization algorithm, specifically 

355 "ADAM" was utilized with a learning rate of 0.001 during parameter training.

356 As for the activation function, RELU was utilized for the three convolutional layers due to its 

357 widespread application [21]. A dropout value of 0.5 was selected to counteract overfitting. The 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.15.24312032doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24312032
http://creativecommons.org/licenses/by/4.0/


358 classification of the four dementia groups was carried out based on the softmax activation function 

359 in the final FC layer.

360

361 Experimental Design 

362 In our study, the proposed models considered the impact of health records on classifier 

363 performance. To illustrate the effect of health records on recognition rates, the comparison was 

364 made between 2D MR vs. 2DMRIwHR and 3D MR vs. 3DMRIwHR, utilizing 2D CNN and 3D 

365 CNN deep-learning techniques, respectively. 

366 The 2D and 3D classification methods were implemented using the Keras 2.8.0 library in Python 

367 3.9, built on TensorFlow-gpu 2.8.0. The execution occurred on a PC equipped with an NVIDIA 

368 RTX2060 GPU running the Windows operating system. In the network, the Adaptive Moment 

369 Estimation (ADAM) optimizer was employed, starting with an initial learning rate of 0.001. A 

370 dropout rate of 0.5 was set to mitigate overfitting. For 3D classification, the batch size was set to 

371 64, while the 2D classification employed a batch size of 128.

372 The image count for each class was divided into two sets using a 0.8 training and 0.2 testing ratio. 

373 Subsequently, data augmentation was applied to the train set, effectively doubling the number of 

374 images in each class. As a result, the overall training dataset containing 8000 images was divided 

375 into a training set (comprising 64% of the images), a validation set (consisting of 16% of the 

376 images). During the classification phase, only images belonging to the class with the lowest image 

377 count were utilized to accurately assess the impact of the pipe-laying process. This approach 

378 ensured balanced representation among classes.

379

380
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381 Data Augmentation

382 The image count for each class was divided into two sets using a 0.8 training and 0.2 testing ratio. 

383 Subsequently, data augmentation was applied to the train set, effectively doubling the number of 

384 images in each class. As a result, the overall training dataset containing 8000 images was divided 

385 into a training set (comprising 64% of the images), a validation set (consisting of 16% of the 

386 images).

387 The 2D and 3D classification methods were implemented using the Keras 2.8.0 library in Python 

388 3.9, built on TensorFlow-gpu 2.8.0. The execution occurred on a PC equipped with an NVIDIA 

389 RTX2060 GPU running the Windows operating system. In the network, the Adaptive Moment 

390 Estimation (ADAM) optimizer was employed, starting with an initial learning rate of 0.001. A 

391 dropout rate of 0.5 was set to mitigate overfitting. For 3D classification, the batch size was set to 

392 64, while the 2D classification employed a batch size of 128.

393

394 Results and Discussion

395 The 3D CNN method using only MRI achieved an accuracy of 86.87%, while the inclusion of 

396 health records (3DMRIwHR) improved accuracy by 3.13% for multi-class classification of 

397 preprocessed medical images involving AD, LMCI, EMCI, and CN categories. Similarly, the 2D 

398 CNN method without health records achieved an accuracy of 81.43%, which increased to 87.00% 

399 when health records were integrated. Given the improved performance of both 2D and 3D CNN 

400 models with health records, it can be inferred that combining health records with MRI data leads 

401 to superior outcomes. Furthermore, it was observed that the 3D CNN model with health records 

402 outperformed the 2D CNN model with health records due to its ability to leverage spatial 

403 information between the 2D layers of MRI. As depicted in Figures 4 and 5, the training and 
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404 validation accuracies provide evidence that the proposed models function effectively without 

405 overfitting.

406

407 Figure 4. Training and validation accuracy and loss for 3D classification model

408

409

410 Figure 5.Training and validation accuracy and loss for 2D classification model (a) with and (b) without 3D-HR data

411

412 Evidently, the 3D CNN model surpassed the 2D CNN model in classifying both pre- and post-

413 method datasets. The utilization of information across layers in 3D sMRI scans, as opposed to 2D 

414 images, grants the 3D CNN model a greater classification advantage. Illustrated in Figures 4 and 

415 5, the difference in accuracy rates before and after applying the method was less pronounced in 3D 
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416 classification compared to 2D classification, mainly due to the richer features present in 3D images. 

417 Notably, the additional features introduced alongside health records exhibited a more substantial 

418 impact on the classification accuracy of pre- and post-method 2D images, despite their lower 

419 overall feature count. 

420 The confusion matrix illustrates the performance of the proposed 3D classifier in distinguishing 

421 various class labels when the 3DMRIwHR method is not utilized, as depicted in Figure 6. Without 

422 the application of the 3DMRIwHR method, 691 out of 800 images were accurately predicted, while 

423 109 were predicted incorrectly. In the post-method classification, 720 out of 800 images were 

424 correctly predicted, and 80 were inaccurately predicted. By ranking disease stages by severity as 

425 AD, LMCI, EMCI, and CN, the error matrix revealed that the detection capability improved with 

426 the 3DMRIwHR method as the disease progressed to more severe stages.

427

428

429 Figure 6. The confusion matrix for preprocessed and pipe layed data 3D classification model

430

431 The confusion matrix shows the effectiveness of the proposed 2D classifier in categorizing 

432 different class labels when the 2DMRIwHR method is both applied and not applied, as shown in 
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433 Figure 7. In cases where the 2DMRIwHR method was not used, 645 of the 800 images were 

434 accurately predicted, while 155 were incorrectly predicted. Following the post-method 

435 classification, 698 out of 800 images were correctly predicted, and 102 were predicted inaccurately. 

436 Similar to the 3D classifier, a pattern emerged in the confusion matrix for the 2D classifier, 

437 indicating improved detection ability with the 2DMRIwHR method as the disease severity 

438 escalated.

439

440

441 Figure 7. The confusion matrix for preprocessed and pipe layed data 2D classification model

442

443 Comparing results before and after the application of the 3DMRIwHR method in the order of class 

444 levels CN, EMCI, LMCI, and AD revealed an increase in the predictive capability of the proposed 

445 model with rising disease levels. Notably, the 3D CNN model accurately identified all images in 

446 the AD class, regardless of the presence of this method. The highest estimation for the healthy class 

447 (CN) was achieved when the 3DMRIwHR method was applied, utilizing a single MMSE 3D-HR 

448 marker. Within the EMCI class, the highest estimation occurred in the classification following the 

449 3DMRIwHR method, wherein all markers were applied collectively. The proposed method notably 
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450 heightened predictive accuracy for the early MCI level, which signifies the disease's initial stage 

451 and aligns with the study's goal of early diagnosis.

452 Regarding the LMCI class, the method's application using a single age 3D-HR marker resulted in 

453 the highest predictive accuracy. The decreased classification accuracy observed when combining 

454 images with ApoE ε4 3D-PI markers, compared to the rate without the method, can be attributed 

455 to the dataset's composition: 285 participants exhibited positive values, while 495 displayed 

456 negative values.

457 The evaluation of the model encompassed the analysis of accuracy, loss, confusion metrics, F1 

458 score, recall, and precision parameters. Table 2 presents the performance metrics of the model after 

459 100 learning epochs.

460

461

462

463 Table 1. Comparison of the Performance Metrics of 3D CNN Model with and without 3DMRIwHR

3D MRI

Accuracy: 86.87%

3DMRIwHR

Accuracy: 90.00%Precision Recall F1-Score Precision Recall F1-Score Support

AD 0.97 1.00 0.98 1.00 ( +0.03)              1.00 1.00 (+0.02) 200

LMCI 0.81 0.85 0.83 0.85 ( + 0.04) 0.92 (+0.7) 0.88 (+0.05) 200

EMCI 0.86 0.74 0.80 0.82 (-0.04) 0.90 (+0.16) 0.86 (+0.04) 200

CN 0.82 0.86 0.84 0.95 (+0.13) 0.79 (-0.7) 0.86 (+0.02) 200

Avg 0.86 0.86 0.86 0.91 (+0.05) 0.90 (+0.04) 0.90 (+0.04) 800

464

465 The precision column displays values signifying the actual criteria for accurately classified images 

466 among all samples categorized as positive. Without utilizing this method, the precision criterion 

467 for correctly classifying patients with AD was 0.97. With the implementation of this method, this 
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468 ratio improved to 1.00. Notably, precision values exhibit a progressive increase in accordance with 

469 the proposed method as patient groups are arranged from worse to better.

470 The second column presents the sensitivity (recall) scale, which signifies the model's capability to 

471 detect positive samples. For the patients with EMCI, the sensitivity rate elevated from 0.74 to 0.90. 

472 Application of the 3DMRIwHR method led to increased sensitivity rates in diagnosing patient 

473 groups but decreased rates in the healthy group.

474 The F1 score, a harmonic mean of precision and sensitivity values, was chosen to avoid incorrect 

475 model selection in unbalanced datasets. Given the study's use of balanced datasets, the F1 score 

476 closely mirrored the precision values in the research outcomes. Noticeably, these values escalated 

477 for all classes, with no imbalance between precision and sensitivity. While F1 scores did not 

478 decrease for cases before and after applying the method, enhancements were evident in the AD, 

479 LMCI, and CN classes.

480 For the 2D CNN performance metrics, Table 3 details precision, sensitivity, and F1 scores for each 

481 class in scenarios with and without the proposed method. Prior to employing the 2DMRIwHR 

482 method, the precision criterion for AH images was 0.78, which increased to 0.86 with the method. 

483 The sensitivity also grew by 0.10 for patients with EMCI. F1 scoring values witnessed elevation 

484 for all classes and there was no imbalance between the precision and sensitivity values. In post-

485 method classification, all metrics in the model exhibited improvement, barring the sensitivity value 

486 for the CN class.

487

488

489
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490 Table 2. Comparison of the Performance Metrics of 2D CNN with and without 2DMRIwHR

2D MRI

Accuracy: 81.43%

2D MRIwHR

Accuracy: 87.00%Precision Recall F1-Score Precision Recall F1-Score Support

AD 0.78 0.92 0.84 0.86 ( + 0.08) 0.94 ( + 0.06) 0.90 ( + 0.06) 200

LMCI 0.83 0.76 0.79 0.84 ( + 0.01) 0.92 ( + 0.16) 0.88 ( + 0.09) 200

EMCI 0.82 0.82 0.82 0.86 ( + 0.04) 0.92 ( + 0.1) 0.89 ( + 0.07) 200

CN 0.80 0.72 0.76 0.93 ( + 0.13) 0.69 ( - 0.03) 0.79 ( + 0.03) 200

Avg 0.81 0.81 0.80 0.87 ( + 0.06) 0.87 ( + 0.06) 0.86 ( + 0.06) 800

491

492 Separate processes were conducted on both 2D and 3D images to assess the impact of the data 

493 fusion method across dimensions. Based on performance metrics, classification outcomes for 3D-

494 HR data were consistently superior to those achieved without 3D-HR data in both models. 

495 Moreover, our study affirmed that a 3D CNN outperformed a 2D CNN in MRI classification 

496 accuracy. Similarly, akin to the 3D fusion method, patient health records were incorporated with 

497 2D MRI images. However, extracting meaningful information from 3D sMRI visually is a 

498 nontrivial task. It has been evidenced that deep learning techniques applied to 3D sMRI, leveraging 

499 inter-layer information, yielded enhanced recognition results compared to other techniques 

500 employing 2D sMRI.

501 This data fusion study encompasses several factors contributing to its uniqueness, such as 

502 preprocessing and 3D-HR encoding, simultaneous utilization of neuroimages and health records, 

503 and harnessing the 3D CNN architecture to achieve elevated accuracy through learning regional 

504 patterns, distinguishing it from prior studies. To highlight the impact of the fusion method, results 

505 both with and without the fusion method are presented. We trained markers as features, 

506 transforming them into features during the preprocessing stage, thereby avoiding separate training 

507 and reducing computational time.
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508 Conclusion

509 Computer-aided systems have the potential to aid doctors in achieving faster and more precise 

510 diagnoses during the early stages of AD. To achieve this goal, data beyond patient images is 

511 employed within the diagnostic process. Consequently, the types of data utilized can be diverse. 

512 CAD systems can experience enhancements when incorporating various data types. In our study, 

513 alongside image data, demographic information like age, gender, MMSE, and ApoE-ε4 was 

514 integrated.

515 In this study, classification was performed using a CNN architecture based on fused sMRI data, 

516 with textual health records coded as image markers to detect AD. Data fusion was performed on 

517 the preprocessed MRI by transforming participant attributes such as demographic features like age, 

518 gender, ApoE-ε4 gene information, and MMSE cognitive scores into image markers. In multi-class 

519 classification, accuracy values were obtained for the 2D and 3D CNN. The test results 

520 demonstrated that fusing health records increased the recognition rates for Alzheimer's diagnosis.

521 Our study revealed that different types of data can be used to detect AD. Adding health records to 

522 MRI scans increases the AD diagnosis recognition rates. The accuracy of 3DMRIwHR is better 

523 than that of 2DMRIwHR because the 3D image architecture exploits the spatial information 

524 between 2D slices in sMRI. However, the 2D CNN classification method produces a better 

525 accuracy than the 2D LSTM-based RNN because of its pattern detection approach. The 

526 3DMRIwHR method achieved a high recognition accuracy with multi-class dementia evolution. 

527 Thus, practitioners can gain better insights by observing the early phases of dementia diagnosis 

528 based on multiple features.  

529 Reducing examination time and facilitating diagnoses through CAD systems can expedite the 

530 dementia diagnosis process for healthcare professionals. Our study demonstrates that diverse data 
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531 formats can be combined to achieve enhanced accuracy rates while maintaining lower 

532 computational complexity. This empowers doctors and specialists to diagnose dementia by 

533 utilizing all available patient-related data.

534 In conclusion, our study proposes that the 3D data fusion approach can serve not only for 

535 classification but also for predicting convertible MCI.
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