Abstract
Patients with pulmonary fibrosis (PF) often experience long waits before getting a correct diagnosis, and this delay in reaching specialized care is associated with increased mortality, regardless of the severity of the disease. Early diagnosis and timely treatment of PF can potentially extend life expectancy and maintain a better quality of life. Crackles present in the recorded lung sounds may be crucial for the early diagnosis of PF. This paper describes an automated system for differentiating lung sounds related to PF from other pathological lung conditions using the average number of crackles per breath cycle (NOC/BC). The system is divided into four main parts: (1) preprocessing, (2) separation of crackles from normal breath sounds, (3) crackle verification and counting, and (4) estimating NOC/BC. The system was tested on a dataset consisting of 48 (24 fibrotic and 24 non-fibrotic) subjects and the results were compared with an assessment by two expert respiratory physicians. The set of HRCT images, reviewed by two expert radiologists for the presence or absence of pulmonary fibrosis, was used as the ground truth for evaluating the PF and non-PF classification performance of the system. The overall performance of the automatic classifier based on receiver operating curve-derived cut-off value for average NOC/BC of 18.65 (AUC=0.845, 95 % CI 0.739-0.952, p<0.001; sensitivity=91.7 %; specificity=59.3 %) compares favorably with the averaged performance of the physicians (sensitivity=83.3 %; specificity=56.25 %). Although radiological assessment should remain the gold standard for diagnosis of fibrotic interstitial lung disease, the automatic classification system has strong potential for diagnostic support, especially in assisting general practitioners in the auscultatory assessment of lung sounds to prompt further diagnostic work up of patients with suspect of interstitial lung disease.
- Pulmonary fibrosis
- Interstitial lung disease
- Crackles
- Lung sounds
Competing Interest Statement
Dr. Cannesson is a consultant for Edwards Lifesciences and Masimo Corp, and has funded research from Edwards Lifesciences and Masimo Corp. He is also the founder of Sironis and Perceptive Medical and he owns patents and receives royalties for closed loop hemodynamic management technologies that have been licensed to Edwards Lifesciences.
Funding Statement
This work was supported by the NIHR Southampton Biomedical Research Centre, the Engineering and Physical Sciences Research Council (EPSRC), and the AAIR Charity.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study was approved by the local ethics committee of Modenaand Parma (Italy). Written informed consent was collected from all participants.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors