Evaluating the Efficacy of AI-Based Interactive Assessments Using Large Language Models for Depression Screening
View ORCID ProfileZheng Jin, Dandan Bi, Jiaxing Hu, Kaibin Zhao
doi: https://doi.org/10.1101/2024.07.19.24310543
Zheng Jin
1Zhengzhou Normal University
Dandan Bi
1Zhengzhou Normal University
Jiaxing Hu
1Zhengzhou Normal University
Kaibin Zhao
1Zhengzhou Normal University
Data Availability
All data produced are available online at https://osf.io/atq53/
Posted July 21, 2024.
Evaluating the Efficacy of AI-Based Interactive Assessments Using Large Language Models for Depression Screening
Zheng Jin, Dandan Bi, Jiaxing Hu, Kaibin Zhao
medRxiv 2024.07.19.24310543; doi: https://doi.org/10.1101/2024.07.19.24310543
Subject Area
Subject Areas
- Addiction Medicine (386)
- Allergy and Immunology (701)
- Anesthesia (193)
- Cardiovascular Medicine (2859)
- Dermatology (244)
- Emergency Medicine (431)
- Epidemiology (12569)
- Forensic Medicine (10)
- Gastroenterology (807)
- Genetic and Genomic Medicine (4447)
- Geriatric Medicine (402)
- Health Economics (716)
- Health Informatics (2856)
- Health Policy (1050)
- Hematology (376)
- HIV/AIDS (893)
- Medical Education (415)
- Medical Ethics (114)
- Nephrology (464)
- Neurology (4201)
- Nursing (223)
- Nutrition (617)
- Oncology (2205)
- Ophthalmology (626)
- Orthopedics (254)
- Otolaryngology (319)
- Pain Medicine (269)
- Palliative Medicine (83)
- Pathology (488)
- Pediatrics (1172)
- Primary Care Research (483)
- Public and Global Health (6787)
- Radiology and Imaging (1494)
- Respiratory Medicine (902)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (202)
- Urology (174)