Follow this preprint
A Machine Learning Decision Support Tool Optimizes Whole Genome Sequencing Utilization in a Neonatal Intensive Care Unit
View ORCID ProfileEdwin F. Juarez, View ORCID ProfileBennet Peterson, Erica Sanford Kobayashi, View ORCID ProfileSheldon Gilmer, Laura E. Tobin, Brandan Schultz, Jerica Lenberg, Jeanne Carroll, Shiyu Bai-Tong, Nathaly M. Sweeney, Curtis Beebe, Lawrence Stewart, Lauren Olsen, Julie Reinke, Elizabeth A. Kiernan, Rebecca Reimers, Kristen Wigby, Chris Tackaberry, Mark Yandell, Charlotte Hobbs, Matthew N. Bainbridge
doi: https://doi.org/10.1101/2024.07.05.24310008
This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.
Edwin F. Juarez
1Rady Children’s Institute of Genomic Medicine
Bennet Peterson
2University of Utah
Erica Sanford Kobayashi
1Rady Children’s Institute of Genomic Medicine
Sheldon Gilmer
1Rady Children’s Institute of Genomic Medicine
Laura E. Tobin
1Rady Children’s Institute of Genomic Medicine
Brandan Schultz
1Rady Children’s Institute of Genomic Medicine
Jerica Lenberg
1Rady Children’s Institute of Genomic Medicine
Jeanne Carroll
3University of California, San Diego
Shiyu Bai-Tong
3University of California, San Diego
Nathaly M. Sweeney
3University of California, San Diego
Curtis Beebe
1Rady Children’s Institute of Genomic Medicine
Lawrence Stewart
1Rady Children’s Institute of Genomic Medicine
Lauren Olsen
1Rady Children’s Institute of Genomic Medicine
Julie Reinke
1Rady Children’s Institute of Genomic Medicine
Elizabeth A. Kiernan
1Rady Children’s Institute of Genomic Medicine
Rebecca Reimers
1Rady Children’s Institute of Genomic Medicine
Kristen Wigby
1Rady Children’s Institute of Genomic Medicine
Chris Tackaberry
4Clinithink
Mark Yandell
2University of Utah
Charlotte Hobbs
1Rady Children’s Institute of Genomic Medicine
Matthew N. Bainbridge
1Rady Children’s Institute of Genomic Medicine

- Supplemental Table 1[supplements/310008_file02.xlsx]
Posted July 07, 2024.
A Machine Learning Decision Support Tool Optimizes Whole Genome Sequencing Utilization in a Neonatal Intensive Care Unit
Edwin F. Juarez, Bennet Peterson, Erica Sanford Kobayashi, Sheldon Gilmer, Laura E. Tobin, Brandan Schultz, Jerica Lenberg, Jeanne Carroll, Shiyu Bai-Tong, Nathaly M. Sweeney, Curtis Beebe, Lawrence Stewart, Lauren Olsen, Julie Reinke, Elizabeth A. Kiernan, Rebecca Reimers, Kristen Wigby, Chris Tackaberry, Mark Yandell, Charlotte Hobbs, Matthew N. Bainbridge
medRxiv 2024.07.05.24310008; doi: https://doi.org/10.1101/2024.07.05.24310008
This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.
Subject Area
Reviews and Context
0
Comment
0
TRIP Peer Reviews
0
Community Reviews
0
Automated Services
0
Blogs/Media
0
Author Videos
Subject Areas
- Addiction Medicine (413)
- Allergy and Immunology (728)
- Anesthesia (215)
- Cardiovascular Medicine (3126)
- Dermatology (265)
- Emergency Medicine (464)
- Epidemiology (13076)
- Forensic Medicine (14)
- Gastroenterology (868)
- Genetic and Genomic Medicine (4895)
- Geriatric Medicine (451)
- Health Economics (755)
- Health Informatics (3089)
- Health Policy (1109)
- Hematology (411)
- HIV/AIDS (973)
- Medical Education (457)
- Medical Ethics (121)
- Nephrology (502)
- Neurology (4664)
- Nursing (248)
- Nutrition (691)
- Oncology (2405)
- Ophthalmology (683)
- Orthopedics (270)
- Otolaryngology (333)
- Pain Medicine (311)
- Palliative Medicine (88)
- Pathology (519)
- Pediatrics (1249)
- Primary Care Research (526)
- Public and Global Health (7231)
- Radiology and Imaging (1613)
- Respiratory Medicine (945)
- Rheumatology (462)
- Sports Medicine (403)
- Surgery (518)
- Toxicology (65)
- Transplantation (222)
- Urology (193)