Predicting IVF live birth probabilities using machine learning, center-specific models: validation results and potential benefits over national registry-based models
Elizabeth T. Nguyen, Matthew G. Retzloff, L. April Gago, John E. Nichols, John F. Payne, Barry A. Ripps, Michael Opsahl, Jeremy Groll, Ronald Beesley, Gregory Neal, Jaye Adams, Lorie Nowak, Trevor Swanson, Xiaocong Chen, View ORCID ProfileMylene W. M. Yao
doi: https://doi.org/10.1101/2024.06.20.24308970
Elizabeth T. Nguyen
1R&D Department, Univfy, Los Altos, CA, US
PhDMatthew G. Retzloff
2Fertility Center of San Antonio, San Antonio, TX, US
MDL. April Gago
3Gago Center for Fertility, Brighton, MI, US
MDJohn E. Nichols
4Piedmont Reproductive Endocrinology Group, Greenville, SC, US
MDJohn F. Payne
4Piedmont Reproductive Endocrinology Group, Greenville, SC, US
MDBarry A. Ripps
5NewLIFE Fertility, Pensacola, FL, US
MDMichael Opsahl
6Poma Fertility, Kirkland, WA, US
MDJeremy Groll
7SpringCreek Fertility, Dayton, OH, US
MDRonald Beesley
6Poma Fertility, Kirkland, WA, US
MDGregory Neal
2Fertility Center of San Antonio, San Antonio, TX, US
MDJaye Adams
2Fertility Center of San Antonio, San Antonio, TX, US
MDLorie Nowak
7SpringCreek Fertility, Dayton, OH, US
PhDTrevor Swanson
1R&D Department, Univfy, Los Altos, CA, US
PhDXiaocong Chen
1R&D Department, Univfy, Los Altos, CA, US
MScMylene W. M. Yao
1R&D Department, Univfy, Los Altos, CA, US
MDArticle usage
Posted September 18, 2024.
Predicting IVF live birth probabilities using machine learning, center-specific models: validation results and potential benefits over national registry-based models
Elizabeth T. Nguyen, Matthew G. Retzloff, L. April Gago, John E. Nichols, John F. Payne, Barry A. Ripps, Michael Opsahl, Jeremy Groll, Ronald Beesley, Gregory Neal, Jaye Adams, Lorie Nowak, Trevor Swanson, Xiaocong Chen, Mylene W. M. Yao
medRxiv 2024.06.20.24308970; doi: https://doi.org/10.1101/2024.06.20.24308970
Predicting IVF live birth probabilities using machine learning, center-specific models: validation results and potential benefits over national registry-based models
Elizabeth T. Nguyen, Matthew G. Retzloff, L. April Gago, John E. Nichols, John F. Payne, Barry A. Ripps, Michael Opsahl, Jeremy Groll, Ronald Beesley, Gregory Neal, Jaye Adams, Lorie Nowak, Trevor Swanson, Xiaocong Chen, Mylene W. M. Yao
medRxiv 2024.06.20.24308970; doi: https://doi.org/10.1101/2024.06.20.24308970
Subject Area
Subject Areas
- Addiction Medicine (400)
- Allergy and Immunology (711)
- Anesthesia (204)
- Cardiovascular Medicine (2960)
- Dermatology (250)
- Emergency Medicine (443)
- Epidemiology (12768)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4604)
- Geriatric Medicine (420)
- Health Economics (731)
- Health Informatics (2935)
- Health Policy (1069)
- Hematology (390)
- HIV/AIDS (927)
- Medical Education (429)
- Medical Ethics (116)
- Nephrology (471)
- Neurology (4383)
- Nursing (237)
- Nutrition (641)
- Oncology (2282)
- Ophthalmology (648)
- Orthopedics (258)
- Otolaryngology (326)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1198)
- Primary Care Research (499)
- Public and Global Health (6967)
- Radiology and Imaging (1537)
- Respiratory Medicine (917)
- Rheumatology (442)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (182)