Abstract
Deciding when to enforce or relax non-pharmaceutical interventions (NPIs) based on real-time outbreak surveillance data is a central challenge in infectious disease epidemiology. Reporting delays and infection under-ascertainment, which characterise practical surveillance data, can misinform decision-making, prompting mistimed NPIs that fail to control spread or permitting deleterious epidemic peaks that overload healthcare capacities. To mitigate these risks, recent studies propose more data-insensitive strategies that trigger NPIs at predetermined times or infection thresholds. However, these strategies often increase NPI durations, amplifying their substantial costs to livelihood and life-quality. We develop a novel model-predictive control algorithm that optimises NPI decisions by jointly minimising their cumulative, future risks and costs over stochastic epidemic projections. Our algorithm is among the earliest to realistically incorporate uncertainties underlying both the generation and surveillance of infections. We find, except under extremely delayed reporting, that our projective approach outperforms data-insensitive strategies and show that earlier decisions strikingly improve real-time control with reduced NPI costs. Moreover, we expose how surveillance quality, disease growth and NPI frequency intrinsically limit our ability to flatten epidemic peaks or dampen endemic oscillations and why this potentially makes Ebola virus more controllable than SARS-CoV-2. Our algorithm provides a general framework for guiding optimal NPI decisions ahead-of-time and identifying the key factors limiting practical epidemic control.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
SB and KVP acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/X020258/1), funded by the UK Medical Research Council (MRC). This UK funded award is carried out in the frame of the Global Health EDCTP3 Joint Undertaking. The funders had no role in study design, data collection and analysis, decision to publish, or manuscript preparation. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
References were revised. 2 more relevant citations were added.
Data Availability
The code generating the results presented here is available at https://github.com/sandorberegi/Epidemic-control-with-noisy-real-time-data.
https://github.com/sandorberegi/Epidemic-control-with-noisy-real-time-data