Abstract
Stress is a psychological condition due to the body’s response to a challenging situation. If a person is exposed to prolonged periods and various forms of stress, their physical and mental health can be negatively affected, leading to chronic health problems. It is important to detect stress in its initial stages to prevent psychological and physical stress-related issues. Thus, there must be alternative and effective solutions for spontaneous stress monitoring. Wearable sensors are one of the most prominent solutions, given their capacity to collect data continuously in real-time. Wearable sensors, among others, have been widely used to bridge existing gaps in stress monitoring thanks to their non-intrusive nature. Besides, they can continuously monitor vital signs, e.g., heart rate and activity. Yet, most existing works have focused on data acquired in controlled settings. To this end, our study aims to propose a machine learning-based approach for detecting the onsets of stress in a free-living environment using wearable sensors. The authors utilized the SWEET dataset collected from 240 subjects via electrocardiography (ECG), skin temperature (ST), and skin conductance (SC). In this work, four machine learning models were tested on this data set consisting of 240 subjects, namely K-Nearest Neighbors (KNN), Support vector classification (SVC), Decision Tree (DT), and Random Forest (RF). These models were trained and tested on four data scenarios. The K-Nearest Neighbor (KNN) model had the highest accuracy of 98%, while the other models also performed satisfactorily.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The data utilized in this paper has been obtained through a formal agreement with IMEC, OnePlanet Research Center, Netherlands. Any request for the data should be addressed to Prof. Chris Van Hoof, IMEC, OnePlanet Research Center, Netherlands.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes