Abstract
The enforcement of COVID-19 interventions by diverse governmental bodies, coupled with the indirect impact of COVID-19 on short-term environmental changes (e.g. plant shutdowns lead to lower greenhouse gas emissions), influences the dengue vector. This provides a unique opportunity to investigate the impact of COVID-19 on dengue transmission and generate insights to guide more targeted prevention measures. We aim to compare dengue transmission patterns and the exposure-response relationship of environmental variables and dengue incidence in the pre- and during-COVID-19 to identify variations and assess the impact of COVID-19 on dengue transmission. We initially visualized the overall trend of dengue transmission from 2012-2022, then conducted two quantitative analyses to compare dengue transmission pre-COVID-19 (2017-2019) and during-COVID-19 (2020-2022). These analyses included time series analysis to assess dengue seasonality, and a Distributed Lag Non-linear Model (DLNM) to quantify the exposure-response relationship between environmental variables and dengue incidence. We observed that all subregions in Thailand exhibited remarkable synchrony with a similar annual trend except 2021. Cyclic and seasonal patterns of dengue remained consistent pre- and during-COVID-19. Monthly dengue incidence in three countries varied significantly. Singapore witnessed a notable surge during-COVID-19, particularly from May to August, with cases multiplying several times compared to pre-COVID-19, while seasonality of Malaysia weakened. Exposure-response relationships of dengue and environmental variables show varying degrees of change, notably in Northern Thailand, where the peak relative risk for the maximum temperature-dengue relationship rose from about 3 to 17, and the max RR of overall cumulative association 0-3 months of relative humidity increased from around 5 to 55. Our study is the first to compare dengue transmission patterns and their relationship with environmental variables before and during COVID-19, showing that COVID-19 has affected dengue transmission at both the national and regional level, and has altered the exposure-response relationship between dengue and the environment.
Author Summary Dengue fever is a typical tropical disease transmitted via mosquito bites. COVID-19 lockdowns have altered human-mosquito contact patterns that impacted dengue transmission. Additionally, lockdowns caused short-term environmental changes that affected dengue vector breeding. In fact, during the COVID-19 period, the normal prevention and treatment of dengue in many dengue-endemic countries was negatively affected due to the sweep of COVID-19, such as strained allocation of medical resources and misreporting of cases. Therefore, this offers a unique chance to study the impact of COVID-19 on dengue transmission, guiding targeted and reasonable prevention measures. We used a series of analytical approaches including time series analysis, space-time scan statistics, and distributed lag non-linear model to compare the differences in dengue transmission patterns and its exposure-response relationships with four environmental variables (average monthly precipitation, average monthly relative humidity, monthly maximum temperature, and monthly minimum temperature) before and during COVID-19 in three Southeast Asian countries: Malaysia, Singapore and Thailand at the province scale. We found that the dengue transmission pattern and its relationship with the environmental variables changed differently. For instance, seasonality and infections heightened in Singapore during COVID-19 and peak relative risk between max temperature and dengue has rose significantly in Northern Thailand.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Yes
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All relevant data are in the GitHub of the GeoSpatialX Lab (https://github.com/GeoSpatialX).