Abstract
Background and Aims Improved identification of individuals at high risk of developing cardiovascular disease would enable targeted interventions and potentially lead to reductions in mortality and morbidity. Our aim was to determine whether use of large-scale proteomics improves prediction of cardiovascular events beyond traditional risk factors (TRFs).
Methods Using proximity extension assays, 2919 plasma proteins were measured in 38 380 participants of the UK Biobank. Both data- and hypothesis-driven feature selection and trained models using extreme gradient boosting machine learning were used to predict risk of major cardiovascular events (MACE: fatal and non-fatal myocardial infarction, stroke and coronary artery revascularisation) during a 10-year follow-up. Area under the curve (AUC) and net reclassification index (NRI) were used to evaluate the additive value of selected protein panels to MACE prediction by Systematic COronary Risk Evaluation 2 (SCORE2) or the 10 TRFs used in SCORE2.
Results SCORE2 and SCORE2 refitted to UK Biobank data predicted MACE with AUCs of 0.740 and 0.749, respectively. Data-driven selection identified 114 proteins of greatest relevance for prediction. Prediction of MACE was not improved by using these proteins alone (AUC of 0.758) but was significantly improved by combining these proteins with SCORE2 or the 10 TRFs (AUC=0.771, p<001, NRI=0.140, and AUC=0.767, p=0.03, NRI 0.053, respectively). Hypothesis-driven protein selection (113 proteins from five previous studies) also improved risk prediction beyond TRFs while a random selection of 114 proteins did not.
Conclusions Large-scale plasma proteomics with data- and hypothesis-driven protein selection modestly improves prediction of future MACE beyond TRFs.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported by the Swedish Heart Lung Foundation (20210383), the Swedish Research Council (2019-01140) and grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-718851, ALFGBG-991828).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
UK Biobank has approval from the North-West Multi-centre Research Ethics Committee (MREC) as a Research Tissue Bank (RTB). The current study was also approved by the Swedish ethical review authority (2021-04030).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data availability statement
The data that support the findings of this study are available from UK Biobank.