Abstract
Optimal treatments depend on numerous factors such as drug chemical properties, disease biology, and patient characteristics to which the treatment is applied. To realize the promise of AI in healthcare, there is a need for designing systems that can capture patient heterogeneity and relevant biomedical knowledge. Here we present PlaNet, a geometric deep learning framework that reasons over population variability, disease biology, and drug chemistry by representing knowledge in the form of a massive clinical knowledge graph that can be enhanced by language models. Our framework is applicable to any sub-population, any drug as well drug combinations, any disease, and a wide range of pharmacological tasks. We apply the PlaNet framework to reason about outcomes of clinical trials: PlaNet predicts drug efficacy and adverse events, even for experimental drugs and their combinations that have never been seen by the model. Furthermore, PlaNet can estimate the effect of changing population on trial outcomes with direct implications for patient stratification in clinical trials. PlaNet takes fundamental steps towards AI-guided clinical trials design, offering valuable guidance for realizing the vision of precision medicine using AI.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We gratefully acknowledge the support of DARPA under Nos. HR00112190039 (TAMI), N660011924033 (MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), NIH under No. 3U54HG010426-04S1 (HuBMAP), Stanford Data Science Initiative, Wu Tsai Neurosciences Institute, Amazon, Docomo, GSK, Hitachi, Intel, JPMorgan Chase, Juniper Networks, KDDI, NEC, and Toshiba.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
This version includes additional results and analyses.