Abstract
Background The integration of data-driven technologies into neurosurgery, particularly through the advent of synthetic data, marks a significant evolution in the field. This qualitative systematic review explores the impact of synthetic data on neurosurgical practices, including preoperative planning, intraoperative navigation, postoperative care, training, and research. The goal is to provide a comprehensive assessment of the current applications, benefits, challenges, and future directions of synthetic data in neurosurgery.
Methods A thorough literature review was conducted, focusing on peer-reviewed articles and conference proceedings that detail the use of synthetic data in neurosurgery. The review prioritized studies offering qualitative evaluations, case studies, technological developments, and expert perspectives on synthetic data’s integration into neurosurgical practices. Inclusion criteria were established to select studies that explicitly discuss the generation, utilization, and impact of synthetic data in the discipline.
Results The analysis reveals that synthetic data contributes significantly to neurosurgery, enhancing surgical planning precision, training simulation accuracy, and enabling personalized care. Identified benefits include addressing the scarcity of clinical data, maintaining patient privacy, and facilitating machine learning model development. Challenges such as ensuring data realism and variability, along with the integration of synthetic data into clinical workflows, were also identified. The review further highlights synthetic data’s role in supporting collaborative research, navigating data sharing obstacles, and fostering innovation in neurosurgical methods and patient outcomes.
Conclusions Synthetic data presents a transformative opportunity for neurosurgery, addressing historical challenges and fostering advancements. Despite existing hurdles, its application across neurosurgical domains indicates a shift towards more personalized, precise, and effective patient care. Overcoming these challenges requires ongoing interdisciplinary cooperation and technological progress. The review emphasizes the necessity for standardized methodologies, ethical considerations, and a proactive stance to leverage synthetic data’s potential fully in neurosurgical advancements.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors