Abstract
Background The involvement of the androgen and androgen receptor (AR) pathway in the development of epithelial ovarian cancer is increasingly recognized. However, the specific mechanisms by which anti-androgen agents, such as flutamide, may prevent ovarian cancer and their efficacy remain unknown. We examined the effects of flutamide on the miRNA expression profile found in women at high risk (HR) for ovarian cancer.
Methods Ovarian and tubal tissues, free from ovarian, tubal, peritoneal cancers, and serous tubal intraepithelial carcinoma (STIC), were collected from untreated and flutamide-treated HR women. Low-risk (LR) women served as controls. Transcriptomic miRNA sequencing was performed on these 3 sample cohorts. The miRNAs that showed the most notable differential expression were subjected to functional assays in primary ovarian epithelial cells and ovarian cancer cells.
Results Flutamide treatment demonstrated a normalization effect on diminished miRNA levels in HR tissues compared to LR tissues. Particularly, the miR-449 family was significantly upregulated in HR ovarian tissues following flutamide treatment, reaching levels comparable to those in LR tissues. MiR-449a and miR-449b-5p, members of the miR-449 family, were computationally predicted to target the mRNAs of AR and colony-stimulating factor 1 receptor (CSF1R, also known as c-fms), both of which are known contributors to ovarian cancer progression, with emerging evidence also supporting their roles in ovarian cancer initiation. These findings were experimentally validated in primary ovarian epithelial cells and ovarian cancer cell lines (SKOV3 and Hey): flutamide treatment resulted in elevated levels of miR-449a and miR-449b-5p, and introducing mimics of these miRNAs reduced the mRNA and protein levels of CSF1R and AR. Furthermore, introducing miR-449a and miR-449b-5p mimics showed inhibitory effects on the migration and proliferation of ovarian cancer cells.
Conclusion Flutamide treatment restored the reduced expression of miR-449a and miR-449b-5p in HR tissues, thereby decreasing the expression of CSF1R and AR, functional biomarkers associated with an increased risk of ovarian cancer. In addition to the known direct binding of flutamide to the AR, we found that flutamide also suppresses AR expression via miR-449a and miR-449b-5p upregulation, revealing a novel dual-inhibitory mechanism on the AR pathway. Taken together, our study highlights mechanisms supporting the chemopreventive potential of flutamide in ovarian cancer, particularly in HR patients with reduced miR-449 expression.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by Womens Cancers of the University of Arizona Cancer Center (UACC), the UACC Biomarker Discovery Research Award in Womens Cancers (to GY and SKC), the UACC support grant P30 CA023074 (for UACC tumor biorepository and Clinical Trials Office), and the Bobbi Olson Endowment (to SKC).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee/IRB of the University of Arizona gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
List of abbreviations
- AR
- Androgen Receptor
- BMI
- Body Mass Index
- BRCA1/2
- Breast Cancer 1/2, early onset (genes)
- CSF1
- Colony-Stimulating Factor 1
- CSF1R
- Colony-Stimulating Factor 1 Receptor
- FFPE
- Formalin-Fixed, Paraffin-Embedded
- GAPDH
- Glyceraldehyde-3-Phosphate Dehydrogenase
- hEGF
- human Epidermal Growth Factor
- HR
- High-Risk
- IIT
- Investigator-Initiated Trials
- LR
- Low-Risk
- miR
- microRNA
- qRT-PCR
- Quantitative Reverse Transcription Polymerase Chain Reaction
- STIC
- Serous Tubal Intraepithelial Carcinoma
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.