Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Quantitative Characterization of Retinal Features in Translated OCTA

View ORCID ProfileRashadul Hasan Badhon, Atalie Carina Thompson, Jennifer I. Lim, Theodore Leng, Minhaj Nur Alam
doi: https://doi.org/10.1101/2024.02.23.24303275
Rashadul Hasan Badhon
1Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rashadul Hasan Badhon
Atalie Carina Thompson
2Department of Surgical Ophthalmology, Atrium-Health Wake Forest Baptist, Winston-Salem, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer I. Lim
3Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, IL, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Theodore Leng
4Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Minhaj Nur Alam
1Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: minhaj.alam{at}charlotte.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Purpose This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography (OCT) images into Optical Coherence Tomography Angiography (OCTA) images, potentially bypassing the need for specialized OCTA hardware.

Methods The method involved a generative adversarial network framework that includes a 2D vascular segmentation model and a 2D OCTA image translation model. This framework is designed to enhance the accuracy, resolution, and continuity of vascular regions in the translated OCTA (TR-OCTA) images. The study utilizes a public dataset of 500 patients, divided into subsets based on resolution and disease status, to validate the quality of TR-OCTA images. The validation employs several quality and quantitative metrics to compare the translated images with ground truth OCTAs (GT-OCTA).

Result TR-OCTAs showed high image quality in both 3 and 6 mm datasets (high-resolution, moderate structural similarity and contrast quality compared to GT-OCTAs). There were slight discrepancies in vascular metrics, especially in diseased patients. Blood vessel features like tortuosity and vessel perimeter index showed better trend compared to density feature which is affected by local vascular distortions.

Conclusion This study presents a promising solution to the limitations of OCTA adoption in clinical practice by using ML to translate OCT data into OCTA images.

Translation relevance This study has the potential to significantly enhance the diagnostic process for retinal diseases by making detailed vascular imaging more widely available and reducing dependency on costly OCTA equipment.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was funded by NEI R15EY035804 (MNA) and UNC Charlotte Faculty Research Grant (MNA)

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study used (or will use) ONLY openly available human data that were originally located at: https://ieee-dataport.org/open-access/octa-500

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • Funding: Supported by NEI R15EY035804 (MNA) and UNC Charlotte Faculty Research Grant (MNA).

  • Commercial Relationship Disclosure: There is no commercial relationship from any authors related to this research work.

Data Availability

All data produced in the present work are contained in the manuscript

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 27, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Characterization of Retinal Features in Translated OCTA
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantitative Characterization of Retinal Features in Translated OCTA
Rashadul Hasan Badhon, Atalie Carina Thompson, Jennifer I. Lim, Theodore Leng, Minhaj Nur Alam
medRxiv 2024.02.23.24303275; doi: https://doi.org/10.1101/2024.02.23.24303275
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Quantitative Characterization of Retinal Features in Translated OCTA
Rashadul Hasan Badhon, Atalie Carina Thompson, Jennifer I. Lim, Theodore Leng, Minhaj Nur Alam
medRxiv 2024.02.23.24303275; doi: https://doi.org/10.1101/2024.02.23.24303275

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ophthalmology
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3292)
  • Dentistry and Oral Medicine (364)
  • Dermatology (279)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1171)
  • Epidemiology (13374)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5153)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3268)
  • Health Policy (1140)
  • Health Systems and Quality Improvement (1190)
  • Hematology (431)
  • HIV/AIDS (1017)
  • Infectious Diseases (except HIV/AIDS) (14627)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (477)
  • Medical Ethics (127)
  • Nephrology (523)
  • Neurology (4925)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (883)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (724)
  • Orthopedics (281)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (550)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4212)
  • Public and Global Health (7504)
  • Radiology and Imaging (1705)
  • Rehabilitation Medicine and Physical Therapy (1013)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (497)
  • Sports Medicine (424)
  • Surgery (548)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)