ABSTRACT
Community health programs are gaining relevance within national health systems and becoming inherently more complex. To ensure that community health programs lead to equitable geographic access to care, the WHO recommends adapting the target population and workload of community health workers (CHWs) according to the local geographic context and population size of the communities they serve. Geographic optimization could be particularly beneficial for those activities that require CHWs to visit households door-to-door for last mile delivery of care. The goal of this study was to demonstrate the feasibility and utility of geographic optimization in the context of community health programs in rural areas of the developing world. We developed a decision-making tool based on participatory mapping and route optimization algorithms in order to inform the micro-planning and implementation of two kinds of community health interventions requiring door-to-door delivery: mass distribution campaigns and proactive community case management (proCCM) programs. We applied the Vehicle Routing Problem with Time Windows (VRPTW) algorithm to optimize the on-foot routes that CHWs take to visit households in their catchment, using a geographic dataset obtained from participatory mapping on OpenStreetMap comprising over 100,000 buildings and 20,000 km of footpaths in the rural district of Ifanadiana, Madagascar. We found that personnel-day requirements ranged from less than 15 to over 60 per CHW catchment for mass distribution campaigns, and from less than 5 to over 20 for proCCM programs, assuming 1 visit per month. To facilitate local use of VRPTW algorithms by operational teams, we developed an “e-health” platform to visualize resource requirements, CHW optimal schedules and itineraries according to customizable intervention designs and hypotheses. Further development and scale-up of these tools could help optimize community health programs and other last mile delivery activities, in line with WHO recommendations, linking a new era of big data analytics with the most basic forms of frontline care in resource poor areas.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by a grant from Agence Nationale de la Recherche (Project ANR-19-CE36-0001-01), with additional support from a grant from the Agence Française de Développement (Project PREACTS-Africam) and internal funding from Pivot.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Data are available on OpenStreetMap (https://www.openstreetmap.org) and on the Shiny app (http://research.pivot-dashboard.org/)