Abstract
Objective Many weight loss strategies are based on the restriction of calories or certain foods. Here, we tested a weight loss intervention based solely on increasing the regularity of meals to allow the circadian system to optimally prepare food metabolism for these times.
Participants & Methods In a two-group, single center randomized-controlled single-blind study (pre-registration DRKS00021419) with participants aged 18-65 years and BMI ≥ 22 kg/m², we used a smartphone application to identify the times at which each participant eats particularly frequently and asked participants of the experimental group to restrict their meals to only these times for six weeks. Control participants received sham treatment. Primary outcome was self-reported body weight/BMI and secondary outcome the well-being of participants.
Results Of 148 participants entering the study, 121 were randomized and of these 100 (control: 33, experimental: 67) finished the study. Our results show that the more regular the meals of participants of the experimental group became, the more weight/BMI they lost, averaging 2.62 kg (0.87 kg/m²); p < 0.0001 (BMI: p < 0.0001) compared to an insignificant weight loss of 0.56 kg (0.20 kg/m²) in the control group; p = 0.0918 (BMI: p = 0.0658). Strikingly, weight loss was not related to changes in self-reported calories, food composition, and other food-related factors. Additionally, physical and mental well-being improved significantly.
Conclusion In summary, increasing the regularity of meals causes participants to lose excess body weight and improves overall well-being.
Highlights
Individual optimal times for meals are determined via an app-based meal diary.
Generation of a structure plan for mealtimes are adjusted to individual circadian clocks.
Following this plan, participants lost an average body weight of 2.6 kg over six weeks.
Weight loss is achieved without changes in self-reported food quantity or composition.
Regular mealtimes contribute to the improvement of the general well-being.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
DRKS00021419
Funding Statement
This work was supported by an Emmy Noether fellowship: LA4126/1-1 of the Deutsche Forschungsgemeinschaft to DL. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics Committee of Ludwig Maximilian University gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
In addition to the average daily change in calorie/macronutrient intake during the intervention phase, we also analyzed cumulative changes of caloric/macronutrient intake over the entire course of the study. These data are part of the updated Figures 2 and Figure S2.
Data Availability
All data produced in the present study are available upon reasonable request to the authors. The codes used to calculate MTVS, individual optimal number of meals, and personalized optimal eating times will be available at https://github.com/dolandgraf/Time-To-Eat.git as of the date of publication of this paper.
Abbreviations
- CG
- Control group
- EG
- Experimental group
- IDS-SR
- Self-Assessment Inventory of Depressive Symptoms
- MCTQ
- Munich Chronotype Questionnaire
- MTVS
- Meal time variability score
- PSQI
- Pittsburgh Sleep Quality Index
- SF-36
- 36-Item Short Form Health Survey
- SWE
- Scale of General Expectations of Self-Efficacy