Interpretable Machine Learning Leverages Proteomics to Improve Cardiovascular Disease Risk Prediction and Biomarker Identification
View ORCID ProfileHéctor Climente-González, View ORCID ProfileMin Oh, Urszula Chajewska, Roya Hosseini, Sudipto Mukherjee, Wei Gan, View ORCID ProfileMatthew Traylor, View ORCID ProfileSile Hu, Ghazaleh Fatemifar, Paul Pangilinan Del Villar, View ORCID ProfileErik Vernet, View ORCID ProfileNils Koelling, Liang Du, Robin Abraham, View ORCID ProfileChuan Li, View ORCID ProfileJoanna M. M. Howson
doi: https://doi.org/10.1101/2024.01.12.24301213
Héctor Climente-González
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Min Oh
2Microsoft, Redmond, WA, USA
Urszula Chajewska
2Microsoft, Redmond, WA, USA
Roya Hosseini
2Microsoft, Redmond, WA, USA
Sudipto Mukherjee
2Microsoft, Redmond, WA, USA
Wei Gan
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Matthew Traylor
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Sile Hu
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Ghazaleh Fatemifar
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Paul Pangilinan Del Villar
2Microsoft, Redmond, WA, USA
Erik Vernet
3Digital Science & Innovation, Novo Nordisk A/S, Maaloev, Denmark
Nils Koelling
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Liang Du
2Microsoft, Redmond, WA, USA
Robin Abraham
2Microsoft, Redmond, WA, USA
Chuan Li
2Microsoft, Redmond, WA, USA
Joanna M. M. Howson
1Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
Posted January 13, 2024.
Interpretable Machine Learning Leverages Proteomics to Improve Cardiovascular Disease Risk Prediction and Biomarker Identification
Héctor Climente-González, Min Oh, Urszula Chajewska, Roya Hosseini, Sudipto Mukherjee, Wei Gan, Matthew Traylor, Sile Hu, Ghazaleh Fatemifar, Paul Pangilinan Del Villar, Erik Vernet, Nils Koelling, Liang Du, Robin Abraham, Chuan Li, Joanna M. M. Howson
medRxiv 2024.01.12.24301213; doi: https://doi.org/10.1101/2024.01.12.24301213
Interpretable Machine Learning Leverages Proteomics to Improve Cardiovascular Disease Risk Prediction and Biomarker Identification
Héctor Climente-González, Min Oh, Urszula Chajewska, Roya Hosseini, Sudipto Mukherjee, Wei Gan, Matthew Traylor, Sile Hu, Ghazaleh Fatemifar, Paul Pangilinan Del Villar, Erik Vernet, Nils Koelling, Liang Du, Robin Abraham, Chuan Li, Joanna M. M. Howson
medRxiv 2024.01.12.24301213; doi: https://doi.org/10.1101/2024.01.12.24301213
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (708)
- Anesthesia (201)
- Cardiovascular Medicine (2923)
- Dermatology (249)
- Emergency Medicine (439)
- Epidemiology (12723)
- Forensic Medicine (12)
- Gastroenterology (827)
- Genetic and Genomic Medicine (4571)
- Geriatric Medicine (417)
- Health Economics (729)
- Health Informatics (2913)
- Health Policy (1069)
- Hematology (387)
- HIV/AIDS (924)
- Medical Education (423)
- Medical Ethics (115)
- Nephrology (468)
- Neurology (4341)
- Nursing (235)
- Nutrition (637)
- Oncology (2264)
- Ophthalmology (643)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (278)
- Palliative Medicine (83)
- Pathology (500)
- Pediatrics (1196)
- Primary Care Research (495)
- Public and Global Health (6925)
- Radiology and Imaging (1524)
- Respiratory Medicine (915)
- Rheumatology (437)
- Sports Medicine (385)
- Surgery (486)
- Toxicology (60)
- Transplantation (210)
- Urology (179)