Abstract
Objective We developed a novel imaging biomarker derived from knee dual-energy x-ray absorptiometry (DXA) to predict subsequent total knee replacement (TKR). The biomarker is based on knee shape, determined through statistical shape modelling. It was developed and evaluated using data and scans from the UK Biobank cohort.
Methods Using a 129-point statistical shape model (SSM), knee shape (B-score) and minimum joint space width (mJSW) of the medial joint compartment (binarized as above or below the first quartile) were derived. Osteophytes were manually graded in a subset of DXA images. Cox proportional hazards models were used to examine the associations of B-score, mJSW and osteophyte score with the risk of TKR, adjusted for age, sex, height and weight.
Results The analysis included 37,843 individuals (mean 63.7 years). In adjusted models, B-score and mJSW were associated with TKR: a standard deviation increase in B-score was associated with a hazard ratio (HR) of 2.32 (2.13, 2.54), and a lower mJSW with a HR of 2.21 (1.76, 2.76). In the 6,719 images scored for osteophytes, mJSW was replaced by osteophyte score in the most strongly predictive model for TKR. In subsequent ROC analyses, a model combining B-score, osteophyte score, and demographic variables had superior discrimination (AUC=0.87) in predicting TKR at five years compared with a model with demographic variables alone (AUC=0.73).
Conclusions An imaging biomarker derived from knee DXA scans reflecting knee shape and osteophytes, in conjunction with demographic factors, could help identify those at high risk of TKR, in whom preventative strategies should be targeted.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was funded by the Wellcome Trust [Grant numbers: 209233/Z/17/Z, 223267/Z/21/Z]. CL was funded by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (223267/Z/21/Z). NCH is supported by grants from Medical Research Council (MRC) [MC_PC_21003; MC_PC_21001] and the NIHR Southampton Biomedical Research Centre. BGF is funded by an NIHR Academic Clinical Lectureship.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The National Information Governance Board for Health and Social Care and Northwest Multi-Centre Research Ethics Committee (11/NW/0382) and UK Biobank Ethics Advisory committee gave ethical approval for all work in this study undertaken with UK Biobank data (UK Biobank application number 17295).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
We confirm that there are no conflicts of interest associated with this manuscript, including any financial support or benefits from commercial sources.
Data Availability
The data from this study will be available from UK Biobank at a forthcoming data release. Users must be registered with UK Biobank to access their resources [https://bbams.ndph.ox.ac.uk/ams/].