Abstract
Background: Metagenomic sequencing of wastewater (W-MGS) can in principle detect any known or novel pathogen in a population. We quantify the sensitivity and cost of W-MGS for viral pathogen detection by jointly analysing W-MGS and epidemiological data for a range of human-infecting viruses. Methods: Sequencing data from four studies were analysed to estimate the relative abundance (RA) of 11 human-infecting viruses. Corresponding prevalence and incidence estimates were obtained or calculated from academic and public-health reports. These estimates were combined using a hierarchical Bayesian model to predict RA at set prevalence or incidence values, allowing comparison across studies and viruses. These predictions were then used to estimate the sequencing depth and concomitant cost required for pathogen detection using W-MGS with or without use of a hybridization-capture enrichment panel. Findings: After controlling for variation in local infection rates, relative abundance varied by orders of magnitude across studies for a given virus. For instance, a local SARS-CoV-2 weekly incidence of 1% corresponds to predicted SARS-CoV-2 relative abundance ranging from 3.8 x 10-10 to 2.4 x 10-7 across studies, translating to orders-of-magnitude variation in the cost of operating a system able to detect a SARS-CoV-2-like pathogen at a given sensitivity. Use of a respiratory virus enrichment panel in two studies dramatically increased predicted relative abundance of SARS-CoV-2, lowering yearly costs by 24- to 29-fold for a system able to detect a SARS-CoV-2-like pathogen before reaching 0.01% cumulative incidence. Interpretation: The large variation in viral relative abundance after controlling for epidemiological factors indicates that other sources of inter-study variation, such as differences in sewershed hydrology and lab protocols, have a substantial impact on the sensitivity and cost of W-MGS. Well-chosen hybridization capture panels can dramatically increase sensitivity and reduce cost for viruses in the panel, but may reduce sensitivity to unknown or unexpected pathogens.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
S.L.G., J.T.K., D.P.R., W.J.B., and M.R.M. were funded for this research project by gifts from Open Philanthropy (to SecureBio) and the Musk Foundation (to MIT). S.L.G. was additionally supported through a grant by the Swiss Scholarship Foundation. C.W. was supported by Sir Henry Wellcome Postdoctoral Fellowship, reference 224190/Z/21/Z.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.