ABSTRACT
Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal (between-seizure) intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-center study for model development; two-center study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using interictal EEG. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. 47 patients (30 women; ages 20-69; 20 left-sided, 10 right-sided, and 17 bilateral seizure onsets) were analyzed for model development and internal validation. 19 patients (10 women; ages 23-73; 5 left-sided, 10 right-sided, 4 bilateral) were analyzed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Erin Conrad received support from the National Institute of Neurological Disorders and Stroke (NINDS K23 NS121401-01A1) and the Burroughs Wellcome Fund. William Ojemann was supported by the National Science Foundation Research Grant Fellowship (DGE-1845298). Ryan Gallagher received support from NIH Grant T32NS091006. Joshua LaRocque was supported by the NINDS (5T32NS091006-08). Ezequiel Gleichgerrcht received support from Georgia CTSA UL1 (UL1TR002378) and KL2 (KL2TR002381) grants. Kathryn A. Davis received support from the National Institutes of Health (NIH; R01 NS116504, R01 NS125137, R61 NS125568).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This retrospective study was approved by the Institutional Review Boards of the Hospital of the University of Pennsylvania and Medical University of South Carolina.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Raw EEG data is available on ieeg.org. All code used to perform analyses, along with an intermediate dataset containing electrode contact-level features, is publicly available on https://github.com/penn-cnt/cnt_tle_laterality/. The online calculator to predict SOZ laterality given temporal lobe spike rates is available on https://penn-cnt.github.io/epilepsy_lateralization/.